节点文献

时间序列建模在光纤捷联罗经系统初始对准中的应用(英文)

Application of time series modeling in initial alignment of strapdown fiber optic gyro(FOG) compass system

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王珏宋镜明李治民晁代宏

【Author】 Wang Jue;Song Jingming;Li Zhimin;Chao Daihong;School of Instrumentation Science and Opto-eletronics Engineering,Beihang University;

【机构】 北京航空航天大学仪器科学与光电工程学院

【摘要】 光纤陀螺(FOG)随机漂移严重影响捷联罗经系统初始对准的精度。通过对陀螺随机漂移进行建模,然后设计合适的卡尔曼滤波器进行滤波,可以减少随机漂移。在建模过程中,首先要对光纤陀螺随机漂移数据进行平稳性,正态性和零均值检验,之后进行数据预处理。通过相关函数的特点"拖尾"或者"截尾"来进行模型识别,采用最终输出误差准则选择模型的最佳阶数,然后采取Levison关系约束的Burg算法求解模型参数。根据模型建立系统方程和观测方程,然后进行卡尔曼滤波。实验结果表明,基于AR(3)模型的卡尔曼滤波可以有效的减少随机误差。这种方法不仅可以提高初始对准精度,也可以缩短对准时间。

【Abstract】 Fiber Optic Gyro(FOG) random errors seriously affect the initial alignment accuracy of strapdown FOG compass system. In order to minimize FOG random error, a method for time sequence modeling of FOG random drift was presented, and Kalman filter was built. In the process of modeling, statistical test and corresponding pretreatment of FOG drift was essential, as the estimation procedures were available only for stable, normal and zero-mean series. Model was selected by judging the characteristic of "tail off" and "cut off", and the order was determined by final prediction error(FPE) criterion. Burg algorithm based on Levinson constraints was adopted to solve the model parameters. Based on Auto Regressive Moving Average(ARMA) model, system equations and observations were established, and Kalman Filter was carried out. The experimental result shows that Kalman Filter, which bases on AR(3) model, can effectively eliminate random errors. Not only the method improves the alignment accuracy, but also shortened the alignment time.

  • 【文献出处】 红外与激光工程 ,Infrared and Laser Engineering , 编辑部邮箱 ,2013年S2期
  • 【分类号】TN253;TN966
  • 【被引频次】2
  • 【下载频次】79
节点文献中: 

本文链接的文献网络图示:

本文的引文网络