节点文献

加速器驱动次临界系统中非齐次中子扩散方程的一种解析解(英文)

An Analytical Solution to Inhomogeneous Neutron Difusion Equation in Accelerator Driven System

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 井田王相綦王群武红利龚晓冬

【Author】 JING Tian;WANG Xiangqi;WANG Qun;WU Hongli;GONG Xiaodong;National Synchrotron Radiation Laboratory,University of Science and Technology of China;Department of Modern Physics,University of Science and Technology of China;

【机构】 中国科技大学国家同步辐射实验室中国科技大学近代物理系

【摘要】 利用傅里叶方法得到了非齐次中子扩散方程格林函数的解析形式,通过格林函数计算了当外源在堆芯任意位置时的中子通量密度分布,分析了在次临界反应堆系统中,次临界倍增系数ks与外源位置和相同次临界深度下堆芯尺寸的依赖关系。发现,ks随着堆芯尺寸的增加而减小,这点变化虽小,但能量增益对ks以及堆芯尺寸是相当敏感的,加速器驱动的次临界系统(ADS)设计时应必须予以考虑。

【Abstract】 The analytical form of the Green’s functions of the inhomogeneous difusion equation for neutrons are obtained using the Fourier method. The neutron flux distributions with the external neutron source located at arbitrary positions are calculated from the Green’s functions. In a subcritical system, the dependences of the subcritical multiplication factor kson the source position and the core size with the fixed subcriticality kefare analyzed based on the series solution. It is found that ksdecreases with the core size. Although this variation is small, the energy gain is sensitive to ksand then the core size, which has to be taken into account in the design of the source driven subcritical system.

【基金】 National Natural Science Foundation of China(11045003,10975150)~~
  • 【文献出处】 原子核物理评论 ,Nuclear Physics Review , 编辑部邮箱 ,2013年04期
  • 【分类号】TL501
  • 【下载频次】55
节点文献中: 

本文链接的文献网络图示:

本文的引文网络