节点文献
谱Legendre-Galerkin方法求解线性积分微分方程的超几何收敛性分析
Supergeometric Convergence of Spectral Legendre-Galerkin Approach for the Linear Integro-Differential Equations
【摘要】 采用谱Legendre-Galerkin方法求解第二类Volterra积分微分方程.当核函数k(x,s)=k(x-s)和源函数充分光滑且满足M-条件时,证明了问题的解u必定也满足M-条件.在此基础上,进一步证明了谱Legendre-Galer-kin方法求解第二类Volterra积分微分方程时在L2和L∞意义下的超几何收敛性.而且数值结果很好地反映了理论预期.
【Abstract】 Spectral Legendre-Galerkin apporach is applied for the second-kind Volterra integro-differential equations.When the kernel function k(x,s)=k(x-s) and the source function are smooth enough and satisfy the M-condition,the solution u has also been proved to satisfy the M-condition.Based on it,the supergeometric convergence of the spectral Legendre-Galerkin method for the second-kind Volterra integro-differential equation in L2 and L∞ norms is proved.Further the numerical results validate the theoretical prediction.
【关键词】 Volterra积分微分方程;
谱Legendre-Galerkin;
超几何收敛性;
M-条件;
【Key words】 Volterra integro-differential equations; spectral Legendre-Galerkin; supergeometric convergence; M-condition;
【Key words】 Volterra integro-differential equations; spectral Legendre-Galerkin; supergeometric convergence; M-condition;
【基金】 国家自然科学基金资助项目(NSFC11171104)
- 【文献出处】 湖南师范大学自然科学学报 ,Journal of Natural Science of Hunan Normal University , 编辑部邮箱 ,2013年02期
- 【分类号】O241.82
- 【被引频次】1
- 【下载频次】94