节点文献

汽车声品质的GA-BP神经网络预测与权重分析

Sound quality prediction and weight analysis of vehicles based on GA-BP neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 高印寒唐荣江梁杰赵彤航张澧桐

【Author】 GAO Yin-han1,TANG Rong-jiang2,LIANG Jie1,ZHAO Tong-hang3,ZHANG Li-tong2(1.State Key Laboratory of Automobile Simulation and Control,Jilin University,Changchun 130025,China; 2.College of Instrumentation and Electrical Engineering,Jilin University,Changchun 130061,China; 3.R&D Center,FAW Group Corporation,Changchun 130062,China)

【机构】 吉林大学汽车仿真与控制国家重点实验室吉林大学仪器科学与电气工程学院中国第一汽车股份有限公司技术中心

【摘要】 为了高效而准确地评价与控制车内噪声品质,以B级车稳态工况下副驾位置的车内噪声为研究对象,采用等级评分法对采集到的声音样本进行了主观评价试验,同时计算了7个客观参数。以客观参量为输入,声品质主观结果为输出,引入基于遗传算法的BP神经网络建立了声品质预测模型。实验显示该模型输出结果与实际评分的相关系数达到0.928,检验组的预测最大误差为±8%。以所建模型的连接权值,分析了客观参数对主观评价结果的贡献度,并以影响系数较大的参数为输入重新构建了预测模型。研究结果表明:稳态工况下,车内声品质主要受响度、粗糙度和尖锐度的影响,其预测模型可由这3个参数来描述。

【Abstract】 This paper carried out a subjective evaluation test with magnitude estimation for 78 noise samples to evaluate the sound quality of vehicles.In the test,six types of B-Class vehicles were taken as the study objects and sound signals collected in co-driver locations at steady states as experimental samples.Meanwhile,seven objective parameters were calculated to describe the sound characteristics.By using objective parameters as inputs,subjective values as outputs,a GA-BP neural network was adopted to establish a sound quality prediction model.Experiments show that the model gives good predictions of high correlation(0.928) and low error(±8%).Then,the network connection coefficients were used to calculate the impact weight of objective parameters on the results of subjective evaluation,and a new model with main parameters was established.As expected,the loudness,sharpness and roughness with a total relative importance of 83% are the most influential parameters in vehicle interior sound quality.

【基金】 吉林省科技发展计划资助项目(No.20100361,No.20126007)
  • 【文献出处】 光学精密工程 ,Optics and Precision Engineering , 编辑部邮箱 ,2013年02期
  • 【分类号】U467.4
  • 【被引频次】49
  • 【下载频次】1465
节点文献中: 

本文链接的文献网络图示:

本文的引文网络