节点文献
汽车声品质的GA-BP神经网络预测与权重分析
Sound quality prediction and weight analysis of vehicles based on GA-BP neural network
【摘要】 为了高效而准确地评价与控制车内噪声品质,以B级车稳态工况下副驾位置的车内噪声为研究对象,采用等级评分法对采集到的声音样本进行了主观评价试验,同时计算了7个客观参数。以客观参量为输入,声品质主观结果为输出,引入基于遗传算法的BP神经网络建立了声品质预测模型。实验显示该模型输出结果与实际评分的相关系数达到0.928,检验组的预测最大误差为±8%。以所建模型的连接权值,分析了客观参数对主观评价结果的贡献度,并以影响系数较大的参数为输入重新构建了预测模型。研究结果表明:稳态工况下,车内声品质主要受响度、粗糙度和尖锐度的影响,其预测模型可由这3个参数来描述。
【Abstract】 This paper carried out a subjective evaluation test with magnitude estimation for 78 noise samples to evaluate the sound quality of vehicles.In the test,six types of B-Class vehicles were taken as the study objects and sound signals collected in co-driver locations at steady states as experimental samples.Meanwhile,seven objective parameters were calculated to describe the sound characteristics.By using objective parameters as inputs,subjective values as outputs,a GA-BP neural network was adopted to establish a sound quality prediction model.Experiments show that the model gives good predictions of high correlation(0.928) and low error(±8%).Then,the network connection coefficients were used to calculate the impact weight of objective parameters on the results of subjective evaluation,and a new model with main parameters was established.As expected,the loudness,sharpness and roughness with a total relative importance of 83% are the most influential parameters in vehicle interior sound quality.
【Key words】 vehicle interior noise; sound quality prediction; GA-BP neural network; weight analysis;
- 【文献出处】 光学精密工程 ,Optics and Precision Engineering , 编辑部邮箱 ,2013年02期
- 【分类号】U467.4
- 【被引频次】49
- 【下载频次】1465