节点文献

认知无线电中基于特征信念的协作频谱检测算法

Cooperation Spectrum Sensing Detecting Algorithm Based on Featured Belief Points in Cognitive Radio Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郑红燕仵博冯延蓬孟宪军

【Author】 Zheng Hongyan1,Wu Bo1,2,Feng Yanpeng1,Meng Xianjun1(1.Shenzhen Polytechnic,Shenzhen 518055,China; 2.School of Information Science and Engineering,Central South University,Changsha 410083,China)

【机构】 深圳职业技术学院中南大学信息科学与工程学院

【摘要】 针对认知无线网络(CRN)中频谱检测准确性与检测效率难以平衡的问题,本文提出一种特征信念的认知无线网络ED/FD协作频谱检测算法。通过单认知用户能量检测与特征信号检测协作模式代替多认知用户协作检测模式,降低通信开销,利用部分可观察马尔可夫决策过程(POMDP)对CRN建模,将检测准确性与检测效率平衡优化问题转化为POMDP最优值函数求解过程,并采用特征信念控制信念状态规模和在线最大报酬值迭代法求解法逼近最优值,降低算法复杂度。实验结果表明,本文算法能有效取得频谱检测准确性与检测效率之间的平衡,达到在不干扰授权用户的同时提高检测效率的目的。

【Abstract】 In order to solve the dilemma of the tradeoff between spectrum sensing performance and spectrum sensing efficiency in cognitive radio network,a novel ED/FD cooperation spectrum sensing algorithm based on featured belief points was proposed.Firstly,this algorithm desployed the single cognitive user energy detection and feature detection collaborative detection mode instead of multiple cognitive user cooperative detection,reducing communication overhead.Secondly,it modeled cognitive radio network under dynamic uncertainty using partially observable Markov decision processes(POMDP),and transformed the optimization of the tradeoff between sensing performance and sensing efficiency into yielding the optimal value function of POMDP.Finally,a novel approach using characteristics of belief to control the scale of belief states was presented,which exploited the maximum online reward value iteration algorithm to approximate the optimal value.The numerical results show that the proposed algorithm is able to meet the requirement of high tracking performance with constraint of low probability of interfering primary users.

【基金】 国家自然科学基金资助项目(No.61074058,No.60874042);国家教育部博士点基金资助项目(No.20090162120068);广东省自然科学基金资助项目(No.S2011040004769)
  • 【文献出处】 电信科学 ,Telecommunications Science , 编辑部邮箱 ,2013年02期
  • 【分类号】TN925
  • 【下载频次】81
节点文献中: 

本文链接的文献网络图示:

本文的引文网络