节点文献
基于PSO-SVM的多阶段产品质量预测控制方法研究
Research on Multi-phased Product Quality Predictive Control Method Based on PSO-SVM
【摘要】 以钢铁产品为例,在分析多工序多阶段产品质量预测控制特点的基础上,建立了多控制点递阶SVM预测控制模型,在模型的求解过程中,提出了基于粗集理论和主成分分析法的数据预处理与模型简化,并利用带约束的PSO算法分别优化了SVM的核超参数和相关影响因素的决策范围,实现了多阶段产品质量预测和相关过程参数的全局优化,为生产过程的质量改进提供了科学的决策依据。
【Abstract】 Take steel product for an example,based on the analysis of quality predictive control characteristics of multi-phased production,a multi-control point hierarchical SVM predictive control model is established.During the solving,a data pre-processing method based on rough set theory and PCA method is proposed.A constrained PSO algorithm is used for optimizing the hyper kernel parameters of SVM and process parameters.The prediction of the multi-phased products and the global optimization of its related process parameters are realized.Thus,some scientific evidences for production process quality improvement is offered with the method.
【Key words】 predictive control; process parameter optimization; support vector machine(SVM); hierarchical model; particle swarm optimization(PSO);
- 【文献出处】 大连民族学院学报 ,Journal of Dalian Nationalities University , 编辑部邮箱 ,2013年01期
- 【分类号】TP311.13;TP18
- 【被引频次】11
- 【下载频次】187