节点文献

基于BSN和CHMMs的人体日常动作识别方法研究

Research on human daily activity recognition method based on BSN and CHMMs

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 姜鸣王哲龙刘晓博赵红宇胡耀华

【Author】 JIANG Ming1,2,WANG Zhe-long1,3,LIU Xiao-bo4,ZHAO Hong-yu1,HU Yao-hua2 1.School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China; 2.School of Electronic Engineering,Dongguan University of Technology,Dongguan 523808,China; 3.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China; 4.School of Electronics and Information Engineering,Dalian Jiaotong University,Dalian 116028,China

【机构】 大连理工大学控制科学与工程学院东莞理工学院电子工程学院中国科学院沈阳自动化研究所 机器人学国家重点实验室大连交通大学电气信息学院

【摘要】 应用人体传感器网络(body sensor networks,BSN)识别人体日常动作可以有效地提高对老年人、慢性病人,以及术后病人等特殊人群的医疗监护质量.为此建立了一个基于BSN的人体日常动作监督平台,应用采集到的加速度信号识别9个常见的人体日常动作.针对动作识别过程中存在的多传感器数据融合问题,提出一种基于耦合隐马尔可夫模型(coupled hidden Markov models,CHMMs)的动作识别方法.实验结果显示,与已有动作识别方法相比,提出的基于CHMMs的动作识别方法的识别正确率有明显的提高.

【Abstract】 Body sensor networks(BSN) may offer continuous monitoring of human activities in a range of healthcare areas,including caring the elderly,helping chronic patients,and monitoring the recovery of post-operative patients.A monitoring platform based on BSN is established for recognizing 9 human daily activities using acceleration signal.A activity recognition method based on coupled hidden Markov models(CHMMs) is proposed for multi-sensor data fusion.The experimental results show that compared with previous methods,the proposed method can achieve satisfactory performance for human daily activity recognition.

【基金】 国家地震行业科研专项资助项目(200808075);国家科技重大专项子课题资助项目(2010ZX04007-011-5)
  • 【文献出处】 大连理工大学学报 ,Journal of Dalian University of Technology , 编辑部邮箱 ,2013年01期
  • 【分类号】TP202;O211.62
  • 【被引频次】21
  • 【下载频次】369
节点文献中: 

本文链接的文献网络图示:

本文的引文网络