节点文献
基于BSN和CHMMs的人体日常动作识别方法研究
Research on human daily activity recognition method based on BSN and CHMMs
【摘要】 应用人体传感器网络(body sensor networks,BSN)识别人体日常动作可以有效地提高对老年人、慢性病人,以及术后病人等特殊人群的医疗监护质量.为此建立了一个基于BSN的人体日常动作监督平台,应用采集到的加速度信号识别9个常见的人体日常动作.针对动作识别过程中存在的多传感器数据融合问题,提出一种基于耦合隐马尔可夫模型(coupled hidden Markov models,CHMMs)的动作识别方法.实验结果显示,与已有动作识别方法相比,提出的基于CHMMs的动作识别方法的识别正确率有明显的提高.
【Abstract】 Body sensor networks(BSN) may offer continuous monitoring of human activities in a range of healthcare areas,including caring the elderly,helping chronic patients,and monitoring the recovery of post-operative patients.A monitoring platform based on BSN is established for recognizing 9 human daily activities using acceleration signal.A activity recognition method based on coupled hidden Markov models(CHMMs) is proposed for multi-sensor data fusion.The experimental results show that compared with previous methods,the proposed method can achieve satisfactory performance for human daily activity recognition.
【Key words】 body sensor networks; activity recognition; coupled HMM; data fusion;
- 【文献出处】 大连理工大学学报 ,Journal of Dalian University of Technology , 编辑部邮箱 ,2013年01期
- 【分类号】TP202;O211.62
- 【被引频次】21
- 【下载频次】369