节点文献

二(2,2,2-三硝基乙基)硝胺的热安全性和密度泛函理论研究(英文)

The Thermal Safety and A Density Functional Theoretical Study on Bis(2,2,2-Trinitroethyl)-Nitramine(BTNNA)

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡荣祖赵凤起高红旭马海霞张海徐抗震赵宏安姚二岗

【Author】 HU Rong-zu1,3,ZHAO Feng-qi1,GAO Hong-xu1,MA Hai-xia2,ZHANG Hai3,XU Kang-zhen2,ZHAO Hong-an4,YAO Er-gang1(1.Science and Technology on Combustion and Explosion Laboratory,Xi’an Modern Chemistry Research Institute,Xi’an,710065,China;2.College of Chemical Engineering,Northwest University,Xi’an 710069,China;3.Department of Mathematics/Institute of Data Analysis and Computation Chemistry,Northwest University,Xi’an 710065 China;4.College of Communication Science and Engineering,Northwest University,Xi’an 710069,China)

【机构】 西安近代化学研究所燃烧与爆炸技术重点实验室西北大学数学系/数据分析和计算化学研究所西北大学化工学院西北大学信息科学与工程学院

【摘要】 借助二(2,2,2-三硝基乙基)硝胺(BTNNA)的恒容标准燃烧热(Qc),不同加热速率(β)非等温DSC曲线离开基线的初始温度(T0)、onest温度(Te)、最大峰顶温度,由Kissinger法和Ozawa法所得的热分解反应活化能(EKand Eo)和指前因子(AK),从方程lnβi=ln[A0/be0(or p0)G(α)]+be0(or p0)Te(or p)i所得的be0(or p0)值,从方程lnβi=ln[A0/(αe0(orp0)+1)G(α)]+lnTe(or p)i所得的ae0(or p0)值,从方程ln(βi/Tei-T0i)=ln[A0/G(α)]+bTei所得的b值,从方程ln(βi/Tei-T0i)=ln[A0/G(α)[+alnTei所得的a值,估算的比热容(cp)、密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据,Zhang-Hu-Xie-Li公式,Hu-Yang-Liang-Xie公式,基于Berthelot方程和Harcourt-Esson方程计算热爆炸临界温度的公式,Smith方程,Friedman公式,Bruckman-Guillet公式,热力学公式和Wang-Du公式,计算了由理想燃烧反应和和Hess定律得到的BTNNA的恒容标准燃烧能ΔcU(BTNNA,s,298.15K)和标准生成焓ΔfHθm(BTNNA,s,298.15K),β0时的T0、Te和Tp值(T00、Te0和Tp0),热爆炸临界温度(Tbe和Tbp),绝热至爆时间(tTIad),撞击感度50%落高(H50),热点起爆临界温度(Tcr),被310K环境包围的半厚和半径为一米的无限大平板、无限长圆柱和球形BTNNA的热感度概率密度函数S(T),相应于S(T)vs T关系曲线最大值的峰温(TS(T)max),安全度(SD),临界热爆炸环境温度(Tacr)和热爆炸概率(PTE)。得到了评价BTNNA热安全性的下列结果:(1)ΔcU(BTNNA,s,298.15K)=-2184.57kJ.mol-1和ΔfHθm(BTNNA,s,298.15K)=(14.08±0.53)kJ.mol-1;(2)T00=356.89K,TSADT=Te0=374.75K,Tp0=430.04K,Tbe0=387.11K,Tbp0=439.20K;(3)当EK=128040J.mol-1,AK=1012.865s-1,cp=1.21J.g-1.K-1,Qd=2725.88J.g-1,T0=Te0=430.04K,T=Tb=442.68K,f(α)=(1-α)n,a=10-3cm,ρ=1.97g.cm-3,t-t0=10-4s,Troom=293.15K,λ=31.4×10-4J.cm-1.s-1时,H50=12.50cm,tTIad=1.73(n=0)s,1.75(n=2)s,Tcr,hot,spot=446.41℃,对无限大平板,TS(T)max=303.5K,Tacr=298.77K,SD=14.57%,PTE=85.43%,对无限长圆柱,TS(T)max=308.5K,Tacr=303.82K,SD=25.57%,PTE=74.43%,对球,TS(T)max=312.0K,Tacr=307.02K,SD=33.67%,PTE=66.33%.运用HF/6-31+G*计算获得BT-NNA的优化构型,NMR化学位移对前沿轨道能量、原子净电荷及稳定化能进行了分析。

【Abstract】 With the help of the constant-volume standard combustion heat(Qc) of bis(2,2,2-trinitroethyl)-nitramine(BTNNA),the initial temperature(T0),at which DSC curves deviates from the baseline,the onset temperature(Te) and maximum peak temperature(Tp) from the non-isothermal DSC curves at different heating rates(β),the thermal decomposition activation energy(EK and E0) and pre-exponential constant(AK) obtained by Kissinger’s method and Ozawa’s method,the value of be0(or p0) from equation lnβi=ln[A0/be0(or p0)G(α)]+be0(or p0)Te(or p)i and the value of ae0(or p0) from equation lnβi=ln[A0/(ae0(or p0)+1)G(α)]+(ae0(or p0))lnTe(or p)i,the value of b from equation lnβi/Tei-T0i=lnA0/G(α)]+bTei,the value of a from equation ln(βi/Tei-T0i)=ln[A0/G(α)]+alnTei,the estimated values of specific heat capacity(cp),density(ρ) and thermal conductivity(λ),the decomposition heat(Qd,taking half-explosion heat),Zhang-Hu-Xie-Li formula,Hu-Yang-Liang-Xie formula,formulae of calculating the critical temperature of thermal explosion based on Berthelot’s equation and Harcourt-Esson’s equation,Smith’s equation,Friedman’s formula,Bruckman-Guillet formula,thermodynamic formulae and Wang-Du formulas,the constant-volume standard combustion energy ΔcU(BTNNA,s,298.15K) and standard enthalpy of formation ΔfHθm(BTNNA,s,298.15K) obtained by ideal combustion reaction and Hess’s law,the values(T00,Te0 and Tp0) of T0,Te and Tp corresponding to β0,critical temperature of thermal explosion(Tbe0 and Tbp0),adiabatic time-to-explosion(tTIad),50% drop height(H50) of impact sensitivity,critical temperature of hot-spot initiation(Tcr),thermal sensitivity probability density function S(T) for infinite platelike,infinite cylindrical and spheroidic BTNNA with half thickness and radius of 1m surrounded with surrounding of 310K,peak temperature corresponding to the maximum value of S(T) vs T relation curve(TS(T)max),safety degree(SD),critical thermal explosion ambient temperature(Tacr) and thermal explosion probability(PTE) of BTNNA were calculated.The following results of evaluating the thermal safety of BTNNA were obtained:(1) ΔcU(BTNNA,s,298.15K)=-2 184.57 kJ·mol-1 and ΔfHθm(BTNNA,s,298.15 K)=(14.08±0.53)kJ·mol-1;(2)T00=356.89K,TSADT=Te0=374.75K,Tp0=430.04K;Tbe0=387.11K,Tbp0=439.20K;(3) when Ek=128040 J·mol-1,Ak,1012.865 s-1,cp=1.21 J·g-1·K-1,Qd=2 725.88 J·g-1,T0=Te0=430.04K,,T=Tb=442.68K,f(α)=(1-α)n,a=10-3 cm,ρ=1.97 g·cm-3,t-t0=10-4 s,Troom=293.15 K and λ=31.4×10-4 J·cm-1·s-1·K-1,H50=12.50 cm,tTIad=1.73(n=0)s,1.74(n=1)s,1.75(n=2)s,Tcr,hot spot=446.41℃,for infinite plate,TS(T)max=303.5K,Tacr=298.77K,SD=14.57%,PTE=85.43%,for infinite cylinder,TS(T)max=308.5K,Tacr=303.82K,SD=25.57%,PTE=74.43%,for sphere,TS(T)max=312.0K,Tacr=307.02K,SD=33.67%,PTE=66.33%.The optimiaed geometry of BTNNA was obtained using HF/6-31+G* method.The NMR chemical shift were obtained.The frontier orbital energy,atomic net charges and stabilization energy were discussed.

【基金】 Project supported:Science and Technology Foundation of Key Laboratory on Combustion and Explosion of China(No.9140C3501010601)
  • 【文献出处】 火炸药学报 ,Chinese Journal of Explosives & Propellants , 编辑部邮箱 ,2013年01期
  • 【分类号】TQ560.1
  • 【被引频次】7
  • 【下载频次】90
节点文献中: 

本文链接的文献网络图示:

本文的引文网络