节点文献

广义负相依一般风险模型中有限时破产概率的估计及数值模拟

Estimates and Numerical Simulations for the Finite-Time Ruin Probability in the Extended Negatively Dependent General Risk Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨洋林金官

【Author】 Yang Yang 1,2 Lin Jinguan 2(1 School of Mathematics and Statistics,Nanjing Audit University,Nanjing,210029)(2 Department of Mathematics,Southeast University,Nanjing,210096)

【机构】 南京审计学院数学与统计学院东南大学数学系

【摘要】 本文研究了一类带利率的重尾相依风险模型, 其中索赔额是一列上广义负相依随机变量, 索赔到达过程是一般的非负整值过程, 并且独立于索赔额序列, 保费收入过程是一个一般的非负非降随机过程. 我们考虑了两种情况, 其一是索赔额、索赔到达过程及保费收入过程相互独立, 其二是累积折现保费收入总量的尾概率可以被索赔额的尾概率高阶控制, 得到了保险公司有限时破产概率的渐近估计,并且给出了相应的数值模拟, 验证了理论结果的合理性.

【Abstract】 This paper investigates a dependent heavy-tailed risk model with constant interest rate,where the claim sizes are a sequence of upper extended negatively dependent random variables;the claim arrival process is a general nonnegative integer-valued counting process,which is independent of the claim sizes;and the premium process is a general nonnegative and nondecreasing stochastic process.We obtain an asymptotic result on the finite-time ruin probability of an insurance company in two cases,where,one is the claim sizes,the claim arrival process and the premium process are mutually independent;the other is the tail probability of the total discounted amount of premiums can be highly dominated by that of the claim size.Besides,we conduct some numerical simulations to verify the accuracy of the asymptotic relation in the obtained result.

【基金】 国家自然科学基金(11001052,11171065);中国博士后科学基金(20100471365);江苏省自然科学基金(BK2010480,BK2011058);江苏省青蓝工程资助
  • 【文献出处】 应用概率统计 ,Chinese Journal of Applied Probability and Statistics , 编辑部邮箱 ,2012年04期
  • 【分类号】F224;F840
  • 【被引频次】3
  • 【下载频次】131
节点文献中: 

本文链接的文献网络图示:

本文的引文网络