节点文献

基于DE-GEP的高光谱遥感图像分类

Hyperspectral Remote Sensing Image Classification Based on DE and GEP

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李宠谷琼蔡之华

【Author】 LI Chong1,2,GU Qiong1,CAI Zhi-hua2(1 School of Mathematics and Computer Science,Hubei University of Arts and Science,Xiangyang 441053,China; 2 School of Computer,China University of Geosciences,Wuhan 430074,China)

【机构】 湖北文理学院数学与计算机科学学院中国地质大学计算机学院

【摘要】 高光谱遥感数据具有波段数目多、数据量庞大等特点.针对传统方法应用于高光谱图像分类中存在波段选择时计算量大、运行时间长,以及图像分类精度不高等问题,首先利用差分演化算法进行波段选择,有效地降低了信息的冗余和数据的维度,然后对波段选择后的结果成图,并对要识别地物的典型区域进行取样,最后采用基因表达式编程算法构建分类器进行图像分类.在波段选择中,与完全搜索的结果相比,差分演化算法可以在很快的时间里取得了较好的搜索结果,基因表达式编程在遥感图像分类中,分类结果优于传统的KNN算法.

【Abstract】 Hyperspectral data has the features of multi-band,large amounts of data,etc.For hyperspectral remote sensing image classification,traditional methods spend a long operation time in band selection,and image classification accuracy is not high,so first we use differential evolution(DE) for band selection,effectively reduce the redundancy of information and data dimensions,then show the image based on the result of band selection,sample the typical area of the surface feature to identify,finally use gene expression programming(GEP) to bulid classifier for image classification.In band selection,compared with full search algorithm,DE obtains relative good results in a fast time,in GEP image classification,the classification results superior to the traditional KNN algorithm.

【基金】 国家自然科学基金项目(61075063,61172084);湖北省自然科学基金项目(2010CDB05201)
  • 【文献出处】 微电子学与计算机 ,Microelectronics & Computer , 编辑部邮箱 ,2012年11期
  • 【分类号】TP751.1
  • 【被引频次】10
  • 【下载频次】193
节点文献中: 

本文链接的文献网络图示:

本文的引文网络