节点文献

改进的AdaBoost在表情识别中的应用

Improved application of AdaBoost in expression recognition

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张磊赵晓安于明

【Author】 Zhang Lei,Zhao Xiaoan,Yu Ming (School of Computer Science and Engineering,Hebei University of Technology,Tianjin 300401,China)

【机构】 河北工业大学计算机科学与软件学院

【摘要】 考虑到人脸表情识别问题在未来的科学应用中可能出现的样本分布不均匀的情况,在提高识别率的基础上,针对这类问题进行了实验研究,将一种改进的AdaBoost算法与SVM结合运用到表情分类当中。实验结果表明,在出现稀有样本的情况下,相对于普通的AdaBoost训练SVM以及单纯的SVM进行多分类的方法,该算法在识别率方面有了很大提高。

【Abstract】 Taking into account the uneven sample distribution of facial expression recognition problem that may appear in scientific applications in the future, experimental study of such problems is done on the basis of improving the recognition rate, and it conbines the improved AdaBoost algorithm and SVM, which is applied to the expression classification. The experimental results show that the algorithm has been greatly improved in terms of recognition rate in the case of appearing rare samples, by comparing to ordinary AdaBoost training SVM and simple SVM multi-classification method.

【基金】 河北省教育厅重点基金项目(ZD200911)
  • 【文献出处】 微型机与应用 ,Microcomputer & Its Applications , 编辑部邮箱 ,2012年21期
  • 【分类号】TP391.41
  • 【被引频次】2
  • 【下载频次】83
节点文献中: 

本文链接的文献网络图示:

本文的引文网络