节点文献

广义q-树的群连通度(英文)

Group Connectivity of Generalized q-trees

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郝荣霞李德明李赵祥

【Author】 HAO Rongxia~(1,*),LI Deming~2,LI Zhaoxiang~3 (1.Department of Mathematics,Beijing Jiaotong University,Beijing,100044,P.R.China; 2.Department of Mathematics,Capital Normal University,Beijing,100037,P.R.China;3.Department of Mathematics,Central University for Nationalities,Beijing,100081,P.R.China)

【机构】 北京交通大学数学系首都师范大学数学系中央民族大学数学系

【摘要】 设G是无向图,A是加法交换群,且A*=A-0.如果G有一个定向D(G),对任何满足∑v∈V(G)b(v)=0的函数b:V(G)→A,都存在函数f:E(G)→A*使得在每个顶点v∈V(G),从v发出的所有边上的f总值减去进入v的所有边上的f总值恰等于b(v),则称G是A-连通的.群连通数为:Ag(G)=min{n:对任何满足|A|≥n的群A,G是A-连通的}.令q是正整数,广义q-树的定义是按下列递推形式给出的:最小的广义q-树是阶为q的完全图Kq;阶为n+1的广义q-树是由阶为n的广义q-树通过增加一个新顶点和连接此点与阶为n的广义q-树中任意给定的q个顶点得到的.本文对广义q-树G(q≥2)考察Λg(G),证明了如果G是阶n≥3的广义2-树或阶为n∈{3,4}的广义3-树或阶为4的广义4-树,则Λg(G)=4;如果G是阶为n≥5的广义q-树(q≥3),则Ag(G)=3.

【Abstract】 Let G be an undirected graph,A be an(additive) abelian group and A*= A-0.A graph G is A-connected if G has an orientation D(G) such that for every function b:V(G)→A satisfying∑v∈V(G)b(v) = 0,there is a function f:E(G)→A* such that at each vertex v∈V(G),the amount of f values on the edges directed out from v minus the amount of f values on the edges directed into v equals b(v).The group connectivity number A9(G) = min{n:G is A-connected for every abelian group A with |A|> n}.Let q be a positive integer.The generalized q-trees are defined by recursion:the smallest generalized q-tree is the complete graph Kq with order q,and a generalized q-tree with order n + 1 where n≥q is obtained by adding a new vertex adjacent to q arbitrarily selected vertices of a generalized q-tree with order n.In this paper,we investigate Ag(G) for generalized q-trees G with q > 2.We show that if G is a generalized 2-tree with order n > 3 or generalized 3-tree with order n∈{3,4} or generalized 4-tree with order 4,then Ag(G) = 4,and if G is a generalized q-tree for q≥3 with order n≥5,then Ag(G) = 3.

【关键词】 交换群A-连通群连通性
【Key words】 abelian groupA-connectedgroup connectivity
【基金】 Supported by NSFC(No.10871021 and No.11171020)
  • 【文献出处】 数学进展 ,Advances in Mathematics , 编辑部邮箱 ,2012年06期
  • 【分类号】O157.5
  • 【被引频次】1
  • 【下载频次】37
节点文献中: 

本文链接的文献网络图示:

本文的引文网络