节点文献
基于φ取值区间的D-P系列准则与M-C准则匹配方法
Matching Method of D-P Yield Criterions to M-C Based on Value of Internal Frictional Angle
【摘要】 在边坡稳定安全系数求解中,与传统M-C(Mohr-Coulomb)准则相匹配的D-P(Drucker-Prager)准则有平面应变莫尔-库仑匹配D-P准则或者莫尔-库仑等面积圆D-P准则,但这些结论都建立在对边坡算例个别参数试算的基础上,具有"平均和综合"意义,对参数确定的具体边坡,从"平均"意义得出的匹配结论可能存在较大偏差。本文在前人研究基础上,提出了一种在DP系列准则间进行边坡稳定安全系数转换的新方法,即用π平面上D-P系列准则半径比值作为安全系数转换系数,并通过已有算例进行了验证。在此基础上,进一步提出基于内摩擦角φ取值点的D-P系列准则与M-C准则匹配方法,在算例演示中,只需将边坡取不同φ值时DP1准则和M-C准则计算得到的安全系数比值数据,加入内摩擦角~DP半径比值的二维空间,通过比较各曲线在相应φ值的竖向截距即可得到最佳匹配准则。
【Abstract】 On the solution of slope safety factors,the yield criterions matched to traditional Mohr-Coulomb criteria are Mohr-Coulomb matching Drucker-Prager yield criterion under the plane strain condition and equivalent area Drucker-Prager yield criterion.This conclusion is based on slope stability examples by changing some parameters such as internal frictional angle or slope angle which is "average and integra ̄ted".To specific slope with definite parameter,matching conclusion obtained from the "average",sometime means a large deviation.Based on research of predecessors,a new transformation method of different Drucker-Prager yield criterion was put forward using ratios of D-P radii as conversion factor of safety factors under different Drucker-Prager yield criterion,which is verified by former examples.The matching method of D-P yield criterions to M-C based on value of the internal frictional angle was proposed.In examples demonstration,ratios of safety factors under Mohr-Coulomb hexagon circumcircle Drucker-Prager yield criterion(DP1) and M-C criteria vary with the value of the internal frictional angle.These numeri ̄cal value of internal frictional angle and ratios was added to the two-dimensional space of internal frictional angle~ratios of D-P radii.Comparing the y-intercept under corresponding internal fri ̄ctional angle among these curves can get the best matching yield criterion.
【Key words】 slope engineering; Mohr-Coulomb; Drucker-Prager yield criterion; match method;
- 【文献出处】 力学季刊 ,Chinese Quarterly of Mechanics , 编辑部邮箱 ,2012年02期
- 【分类号】TU43
- 【被引频次】18
- 【下载频次】530