节点文献

基于线性二次型高斯基准的多变量预测控制技术经济性能评估

Economic performance assessment of multivariable model predictive control based on linear quadratic Gaussian benchmark

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘詟苏宏业谢磊古勇

【Author】 LIU Zhe,SU Hong-ye,XIE Lei,GU Yong(State Key Lab of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou Zhejiang 310027,China)

【机构】 浙江大学智能系统与控制研究所工业控制技术国家重点实验室

【摘要】 由于受控过程参数的漂移及缺乏维护,令采用的控制器性能逐渐降低,需要做经济性能评估,以确保其最佳运行状态.因为目前最小方差评估算法没有考虑控制器的约束条件,对此我们采用线性二次型高斯(linearquadratic Gaussian,LQG)基准的模型预测控制(model predictive control,MPC)双层优化控制结构,将控制和输出的加权值引入上层经济性能指标,通过求解LQG问题获取控制与输出方差关系的离散点集,进一步拟合Pareto最优曲面方程,建立优化命题并求解最优经济指标及设定值.对延迟焦化加热炉的多变量MPC控制进行了性能评估及分析,证明该方法可以改进控制器设计,提高经济效益.

【Abstract】 Because of the drift in parameter values and the lack of maintenance in the controlled process,the performances of the applied controller gradually deteriorate with time.An economic performance assessment is necessary to give the benefits an evaluation for ensuring system optimal operation status.Since the existing minimum variance control benchmark does not consider restriction conditions of the controller,we propose a two-layer structure model predictive control(MPC) based on the linear quadratic Gaussian(LQG) benchmark,by introducing the weighted input and the weighted output to the upper-layer economic performance index.By solving the LQG problem,we obtain a set of discrete values of the control signal and the output signal for determining their variances and fitting the Pareto optimal surface function.From the formulated propositions,we solve for the optimal economic index and the optimal set-point value.This performance assessment method has been applied to a delayed coking furnace;results show the effectiveness of the proposed approach.

【基金】 国家自然科学基金资助项目(61134007,60904039,60974100);国家重点基础研究发展计划资助项目(2007CB714006);高等学校学科创新引智计划(“111”计划)资助项目(B07031)
  • 【文献出处】 控制理论与应用 ,Control Theory & Applications , 编辑部邮箱 ,2012年12期
  • 【分类号】TP13
  • 【被引频次】12
  • 【下载频次】283
节点文献中: 

本文链接的文献网络图示:

本文的引文网络