节点文献

移动无线传感网络节点协同避障的改进方法

Improved approach for cooperative obstacle-avoidance in mobile wireless sensor network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈佐万新涂员员李仁发

【Author】 CHEN Zuo,WAN Xin,TU Yuan-yuan,LI Ren-fa(School of Information Science and Technology,Hunan University,Changsha Hunan 410082,China)

【机构】 湖南大学信息科学与工程学院

【摘要】 传统蜂拥控制模型在协同避障跟踪方面,目前有Reynolds和Tanner的蜂拥模型。笔者曾对其做出了改进,提出了与Steer to Avoid法则相结合的避障模型,该模型在跟踪过程中对凸形障碍有较高的避障效率。由于在Steer to Avoid的方向判断中,目标对节点具有引力,使节点群陷入凹形区域无法绕出。将协同避障模型引入凹形障碍环境中,对模型进一步改进,在Steer to Avoid转向判断时暂时取消目标对节点群的引力,让节点群在进入凹形后自行做出环境的判断并沿着障碍边缘不断搜索路径,最终绕出障碍到达目标。仿真实验结果表明:与传统两个模型相比,该模型在避障的平均速率和时间效率上有显著提高,适用于避开未知的凹形障碍。

【Abstract】 Current research of the cooperative obstacle-avoidance tracing is based on traditional flocking control model which was proposed by Reynolds and implemented by Tanner.The authors improved it and added the Steer to Avoid obstacle avoidance method.This model has a high efficiency in avoiding convex obstacle in tracking target.If the method is applied to the environment of concave obstacles,nodes will stuck in the concave zone and could not get out,because the target has an attraction power to nodes when it comes to a Steer to Avoid judgment.This paper proposed a new model for concave obstacles by further improving the Steer to Avoid method.The attraction from the target was temporarily cancelled when it came to a concave environment judgment,and then the path was constantly searched along the edge of obstacles.Finally,nodes could get out of the concave obstacles and reach target.The simulation results show that the proposed model,while compared to the traditional model,has a marked increase on average rate and time efficiency in avoiding obstacle.Also,it can succeed in avoiding mobile concave obstacles in unknown environment.

【基金】 高等学校博士学科点专项科研基金资助项目(新教师)(20100161120021);湖南省自然科学基金资助项目(09JJ5045);湖南省科技计划重点项目(2010GK2002)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2012年06期
  • 【分类号】TP212.9;TN929.5
  • 【被引频次】5
  • 【下载频次】118
节点文献中: 

本文链接的文献网络图示:

本文的引文网络