节点文献

用于异常检测的实值否定选择算法

Real-value negative selection algorithm for anomaly detection

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 柴争义王献荣王亮

【Author】 CHAI Zheng-yi1,2,WANG Xian-rong1,WANG Liang3(1.School of Information Science and Engineering,He’nan University of Technology,Zhengzhou 450001,China;2.School of Computer Science and Technology,Xidian University,Xi’an 710071,China;3.Department of Materials Management,Chengde Medical University,Chengde 067000,China)

【机构】 河南工业大学信息科学与工程学院西安电子科技大学计算机学院承德医学院物资管理处

【摘要】 针对已有实值否定选择算法检测器生成过程的不足,提出了一种优化的检测器生成算法。充分利用自体空间的分布,优化检测器生成的中心位置,扩大检测器的半径,尽可能生成覆盖范围大的检测器;使用覆盖率期望值作为算法结束的一个控制参数,有效地避免了冗余检测器的产生。建立了异常检测系统的形式化描述,定义了一个新的异常检测性能衡量指标——错误率。最后,通过人工合成数据集2DSyntheticData以及实际的Iris数据集及Bio-medical数据集对算法进行了验证。试验结果表明,相比V-detector算法,本文算法提高了检测率,降低了错误率,减少了所需检测器数量,整体检测性能较优。

【Abstract】 An optimized detector generation algorithm was proposed to solve the shortcomings of existing real-value negative selection algorithm.This algorithm fully utilizes self distribution,optimizes the center of the detector and expands the radius of the detector in order to generate a detector with large coverage.The expected coverage was used as one of the control parameters to end the algorithm so that it can effectively avoid the generation of redundant detector.Moreover,the anomaly detection system and it formal description were established.The error rate as a new index for anomaly detection performance was defined.The 2DSyntheticData and the actual Irish data set and biomedical data were used to test the algorithm.Experimental results show that,compared with V-detector,the algorithm improves detection rate,reduces the error rate and the required number of detectors.So it has a better detection performance.

【基金】 国家自然科学基金项目(61001202,61003199,61072139);高等学校博士学科点专项科研基金项目(20090203120016,20100203120008);郑州市科技发展计划项目(2010GYXM374);河南省自然科学基金项目(2010A520050)
  • 【文献出处】 吉林大学学报(工学版) ,Journal of Jilin University(Engineering and Technology Edition) , 编辑部邮箱 ,2012年01期
  • 【分类号】TP393.08
  • 【被引频次】18
  • 【下载频次】223
节点文献中: 

本文链接的文献网络图示:

本文的引文网络