节点文献

木材表面图像的缺陷分割与类型识别方法

The Method of Defects Segmentation and Recognition to Wood Surface Image

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 白雪冰张娜王再尚

【Author】 BAI Xue-Bing,ZHANG Na,WANG Zai-Shang(Northeast Forestry University,Harbin Heilongjiang 150040,China)

【机构】 东北林业大学

【摘要】 为了识别死节、活节、虫眼三种木材表面缺陷,采用Gabor变换和模糊C均值聚类进行缺陷分割;采用数学形态学运算对分割图像进行了后处理;获取了木材缺陷区域的12维频率能量参数和2维几何形状参数;用支持向量机进行木材表面缺陷类型的识别。采用Gabor变换和模糊C均值聚类方法对死节、活节、虫眼三种木材表面缺陷的分割精度都达到94%以上,支持向量机对缺陷类型分类正确率达到93%以上,这说明本文的方法对木材表面缺陷的分割与识别是可行的。

【Abstract】 In order to recognize the wood surface defects of dead knot,live knot,and worm hole,Gabor transtorm and fuzzy C-means clustering algorithm were used to segment wood image defects.Mathematical morphology was used in post-processing operation of segmented wood images,12 frequency-enengy parameters and 2 shape parameters of defect targets were calculated.Support vector machines were used in the recognition of wood surface defect types.The segmentation accuracy to defects reached up to 94%,and the recognition accuracy to defect types of Support vector machines reached up to 93%.The result shows that it is feasible to segment and identify wood surface defects.

【基金】 黑龙江省博士后基金项目资助(LBH-Q10160)
  • 【文献出处】 机电产品开发与创新 ,Development & Innovation of Machinery & Electrical Products , 编辑部邮箱 ,2012年03期
  • 【分类号】TP391.41
  • 【被引频次】6
  • 【下载频次】153
节点文献中: 

本文链接的文献网络图示:

本文的引文网络