节点文献

基于收缩方法的稳健自适应波束形成算法

Robust adaptive beamforming algorithm using shrinkage method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐定杰贺瑞沈锋单志明

【Author】 Xu Dingjie He Rui Shen Feng Shan Zhiming(College of Automation,Harbin Engineering University,Harbin 150001,China)

【机构】 哈尔滨工程大学自动化学院

【摘要】 针对有限采样数据样本中含有期望信号时自适应波束形成器性能下降的问题,提出了一种不需要任何参数设定的稳健自适应波束形成算法.该算法利用收缩方法得到一个增强的协方差矩阵估计值,替代传统的采样协方差矩阵,提高了算法的性能.为了克服信号导向矢量存在误差时对波束形成器性能的影响,对算法进行进一步的扩充,使其既能改善小快拍时协方差矩阵的估计值又能克服期望信号导向矢量的失配.仿真结果表明:该方法不仅能够改善小快拍情况下波束形成器的性能,而且还能克服期望信号导向矢量失配带来的不利影响.

【Abstract】 To solve the decrease of the performance in the adaptive beamformer in the situation of limited sample size,a robust beamforming algorithm without any parameters was proposed.This algorithm obtained an enhanced covariance matrix estimate via a shrinkage method,instead of the traditional sample covariance matrix,which improved the performance.In order to decrease the mismatch errors between the presumed and actual signal steering vectors,the algorithm was extended.The new derived algorithm is robust against covariance matrix uncertainty and the signal steering vector mismatch.Simulation results indicate that the proposed method can improve the performance in the case of small sample size and is robust against the signal steering vector mismatch.

【基金】 国家自然科学基金资助项目(61102107);黑龙江省博士后面上资助项目(LBH-Z10193);中国博士后科学基金资助项目(20100480979)
  • 【文献出处】 华中科技大学学报(自然科学版) ,Journal of Huazhong University of Science and Technology(Natural Science Edition) , 编辑部邮箱 ,2012年12期
  • 【分类号】TN911.7
  • 【被引频次】6
  • 【下载频次】132
节点文献中: 

本文链接的文献网络图示:

本文的引文网络