节点文献

N,N’-二[(2,2,2-三硝基乙基-N-硝基)]乙二胺的热安全性和密度泛函理论研究(英文)

The Thermal Safety and a Density Functional Theoretical Study on N,N′-Bis[N-(2,2,2-Trinitroethyl)-N-Nitro]Ethylenediamine(BTNEDA)

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 胡荣祖赵凤起高红旭马海霞张海徐抗震赵宏安姚二岗

【Author】 HU Rong-zu1,3, ZHAO Feng-qi1, GAO Hong-xu1, MA Hai-xia2, ZHANG Hai3, XU Kang-zhen2, ZHAO Hong-an4, YAO Er-gang1 (1. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 2. College of Chemical Engineering, Northwest University, Xi′an 710069, China; 3. Department of Mathematics/Institute of Data Analysis and Computation Chemistry, Northwest University, Xi′an 710069, China; 4. College of Communication Science and Engineering, Northwest University, Xi′an 710069, China)

【机构】 西安近代化学研究所燃烧与爆炸技术重点实验室西北大学数学系/数据分析和计算化学研究所西北大学化工学院西北大学信息科学与工程学院

【摘要】 借助N,N’-二[(2,2,2-三硝基乙基-N-硝基)]乙二胺的恒容标准燃烧热(Qc),不同加热速率(β)非等温DSC曲线离开基线的初始温度(T0)、onest温度(Te)、最大峰顶温度,由Kissinger法和Ozawa法所得的热分解反应活化能(EK,EO)和指前因子(AK),从方程lnβi=ln[A0/be0(orp0)G(α)]+be0(orp0)Te(orp)i所得的值be0(orp0),从方程lnβi=ln[A0/(ae0(orp0)+1)G(α)]+(ae0(orp0)+1)lnTe(orp)i所得的ae0(orp0)值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+bTei所得的b值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+alnTei所得的a值,估算的比热容(cp)、密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据,Zhang-Hu-Xie-Li公式,Hu-Yang-Liang-Xie公式,基于Berthelot方程和Harcourt-Esson方程计算热爆炸临界温度的公式,Smith方程,Friedman公式,Bruckman-Guillet公式,热力学公式和Wang-Du公式,计算了由理想燃烧反应和Hess定律得到的BTNEDA的恒容标准燃烧能ΔcU(BTNEDA,s,298.15K)和标准生成焓ΔfHmθ(BTNEDA,s,298.15K),β→0时的T0、Te和Tp值(T00,Te0和Tp0),热爆炸临界温度(Tbe0和Tbp0),绝热至爆时间(tTIad),撞击感度50%落高(H50),热点起爆临界温度(Tcr),被350K环境包围的半厚和半径为1m的无限大平板、无限长圆柱和球形BTNEDA的热感度概率密度函数,相应于S(T)与T关系曲线最大值的峰温(TS(T)max),安全度(SD),临界热爆炸环境温度(Tacr)和热爆炸概率(PTE)。得到了评价BTNEDA热安全性的下列结果:(1)ΔcU(BTNEDA,s,298.15K)=-(3478.11±6.41)kJ.mol-1和ΔfHmθ(BTNEDA,s,298.15K)=-(53.546.41)kJ.mol-1;(2)T00=438.73K,TSADT=Te0=440.73K,Tp0=446.53K;Tbe0=449.88K,Tbp0=455.28K;(3)当EK=199.5kJ·mol-1,AK=1020.45s-1,cp=1.12J·g-1.K-1,Qd=3226J·g-1,T0=Te0=440.73K,T=Tb=455.26K,f(α)=3(1-α)2/3,a=10-3cm,ρ=1.87g·cm-3,t-t0=10-4s,Troom=293.15K和λ=0.00269J·cm-·1s-·1K-1,H50=15.03cm,tTIad=1.25s,Tcr,hot,spot=333.86K;对无限大平板,TS(T)max=350K,Tacr=345.47K,SD=28.55%,PTE=71.45%;对无限长圆柱,TS(T)max=354.5K,Tacr=349.73K,SD=39.31%,PTE=60.69%;对球,TS(T)max=357.00K,Tacr=352.42K,SD=45.81%,PTE=54.19%。运用密度泛函理论计算获得了BT-NEDA的优化构型及红外光谱,分析了其分子总能量、前沿轨道能量和原子净电荷分布。

【Abstract】 With the help of the constant-volume standard combustion heat (Qc) of N,N′-bis[N-(2,2,2-trinitroethyl)-N-nitro]ethylenediamine (BTNEDA), the initial temperature (T0), at which DSC curves deviates from the baseline, the onset temperature (Te) and maximum peak temperature (Tp) from the non-isothermal DSC curves at different heating rates (β), the thermal decomposition activation energy (EK and EO ) and pre-exponential constant (AK) obtained by Kissinger′s method and Ozawa′s method, the value of be0(or p0) from equation lnβi=ln[A0/be0(or p0)G(α)]+be0(or p0)Te(or p)iand the value of ae0(or p0) from equation ln βi=ln[A0/(ae0(or p0)+1)G(α)]+(ae0(or p0)+1)ln Te(or p)i, the value of b from equation ln (βi/(Tei-T0i))=ln (A0/G(α))+bTei, the value of a from equation ln (βi/(Tei-T0i))=ln (A0/G(α))+alnTei, the estimated values of specific heat capacity(cp), density (ρ) and thermal conductivity (λ), the decomposition heat (Qd, taking half-explosion heat), Zhang-Hu-Xie-Li formula, Hu-Yang-Liang-Xie formula, formulae of calculating the critical temperature of thermal explosion based on Berthelot′s equation and Harcourt-Esson′s equation, Smith′s equation, Friedman′s formula, Bruckman-Guillet formula, thermodynamic formulae and Wang-Du formulas, the constant-volume standard combustion energy ΔcU(BTNEDA,s,298.15K) and standard enthalpy of formation ΔfHθm (BTNEDA,s,298.15K) obtained by ideal combustion reaction and Hess′s law, the values (T00, Te0 and Tp0) of T0, Te and Tp corresponding to β0, critical temperature of thermal explosion (Tbe0 and Tbp0), adiabatic time-to-explosion (tTIad), 50% drop height (H50) of impact sensitivity, critical temperature of hot-spot initiation (Tcr), thermal sensitivity probability density function S(T) for infinite platelike, infinite cylindrical and spheroidic BTNEDA with half thickness and radius of 1 m surrounded with surrounding of 350 K, peak temperature corresponding to the maximum value of S(T) vs T relation curve (TS(T)max), safety degree (SD), critical thermal explosion ambient temperature (Tacr) and thermal explosion probability (PTE) of BTNEDA were calculated. The following results of evaluating the thermal safety of BTNEDA were obtained: (1) ΔcU(BTNEDA,s,298.15K)=-(3478.11±6.41) kJ·mol-1 and ΔfHθm (BTNEDA,s,298.15K)=-(53.54±6.41) kJ·mol-1; (2) T00=438.73 K, TSADT=Te0=440.73 K, Tp0=446.53 K; Tbe0=449.88 K, Tbp0=455.28 K; (3) when EK=199.5 kJ·mol-1, AK=1020.45 s-1, cp=1.12 J·g-1·K-1, Qd=3226 J·g-1, T0=Te0=440.73 K, T=Tb=455.26 K, f(α)=3(1-α)2/3, a=10-3 cm, ρ=1.87 g·cm-3, t-t0=10-4 s, Troom=293.15 K and λ=0.00269 J·cm-1·s-1·K-1, H50=15.03 cm, tTIad=1.25 s, Tcr,hot,spot=333.86 K, for infinite plate, TS(T)max=350K, Tacr=345.47 K, SD=28.55%, PTE=71.45%, for infinite cylinder, TS(T)max=354.5 K, Tacr=349.73 K, SD=39.31%, PTE=60.69%, for sphere, TS(T)max=357.00 K, Tacr=352.42 K, SD=45.81%, PTE=54.19%. The conjunction of BTNEDA was optimized with density functional theory (DFT) B3LYP. The atomic charges, total energy and frontier orbital energy were also discussed.

【基金】 National Natural Science Foundation of China (No 21073141;No21173163)
  • 【文献出处】 含能材料 ,Chinese Journal of Energetic Materials , 编辑部邮箱 ,2012年05期
  • 【分类号】TQ560.1
  • 【被引频次】5
  • 【下载频次】95
节点文献中: 

本文链接的文献网络图示:

本文的引文网络