节点文献
带2个参数的二阶脉冲微分方程3点边值问题的正解
Positive solutions to three-pointboundary value problems for second order impulsive differential equations with two parameters
【摘要】 利用锥上的Krasnoselskii不动点定理,讨论了带有2个参数的二阶脉冲微分方程3点边值问题正解的存在性和不存在性。通过定义合适的积分算子,给出了该问题有1个正解或2个正解以及不存在正解的充分条件。
【Abstract】 In this paper,the Krasnoselskii’s fixed-point index theorem is employed in a cone to study the existence and non-existence of positive solutions to the second order impulsive functional differential equations with two parameters.By defining integral operators,sufficient conditions under which the above problem has at least one or two positive solutions or has no positive solution are put forward.
【关键词】 脉冲微分方程;
正解;
Krasnoselskii不动点定理;
【Key words】 impulsive differential equation; positive solution; Krasnoselskii’s fixed-point theorem;
【Key words】 impulsive differential equation; positive solution; Krasnoselskii’s fixed-point theorem;
【基金】 国家自然科学基金资助项目(10971045);河北省自然科学基金资助项目(A2009000664,A2011208012)
- 【文献出处】 河北科技大学学报 ,Journal of Hebei University of Science and Technology , 编辑部邮箱 ,2012年02期
- 【分类号】O175.8
- 【被引频次】1
- 【下载频次】42