节点文献

一种快速的基于生物启发模型的路面裂缝特征提取与识别方法

A method for fast pavement cracking detection based on the biological inspired model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐奕奕唐培和倪志平

【Author】 XU Yi-yia,TANG Pei-hea,NI Zhi-pingb(a.College of Computer Engineering;b.Lushang College,Guangxi University of Technology, Liuzhou 545006,China)

【机构】 广西工学院计算机学院广西工学院鹿山学院

【摘要】 路面裂缝形态复杂、表观差异较大,难以用明确的特征来表示,而通常的wavelet、Gabor变换及其函数都是预定义的,不能适应路面裂缝图像的特点,为此提出一种新颖的基于生物启发模型(BIM)特征的弹性领域联合最大化处理识别算法,采用弹性邻域,先对相邻四邻域或八邻域进行图像分割,并在每一区域引入Adaboost分类器选择,保留关键信息,去掉无用或负面信息.该算法获得的特征向量全面反映了原图像信息,且计算复杂度低,有利于实时应用.实验结果表明:本文所提出的方法在路面裂缝的总体识别率高达99.13%,且响应时间快,充分显示了本方法的有效性.

【Abstract】 Due to the complexity of shape and apparent differences of pavement cracks,it is difficult to characterize them with definite features.The wavelet,Gabor transform and its functions are usually predefined and cannot adapt to the characteristics of the pavement crack images.This paper proposes a novel joint maximization recognition algorithm in the resilient area,which is based on the characteristics of biologically inspired model(BIM).The algorithm uses the elastic neighborhood,the first adjacent neighbors domain or eight neighborhood image segmentation.Adaboost classifier is introduced in each region to select and retain key information,get rid of unwanted or negative information.Its eigenvectors can reflect the information in the original image comprehensively and its low computational complexity is helpful in real-time applications.The experimental results show that the overall recognition rate of the proposed method in pavement cracks is up to 99.13%,and its fast response time fully demonstrate the effectiveness of this method.

【基金】 广西教育厅科研立项项目(201010LX239);广西科技大学(筹)自然科学基金(校科自1261126)资助
  • 【文献出处】 广西工学院学报 ,Journal of Guangxi University of Technology , 编辑部邮箱 ,2012年03期
  • 【分类号】TP391.41;TP274
  • 【下载频次】97
节点文献中: 

本文链接的文献网络图示:

本文的引文网络