节点文献

电磁声发射的实验与信号识别研究(英文)

Signal Recognition and Experiment for Electromagnetically Induced Acoustic Emission

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张闯刘素贞杨庆新金亮杨素梅

【Author】 Zhang Chuang1 Liu Suzhen1 Yang Qingxin1,2 Jin Liang2 Yang Sumei1(1.Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus ReliabilityHebei University of Technology Tianjin 300130 China2.Tianjin Polytechnic University Tianjin 300160 China)

【机构】 河北工业大学电磁场与电器可靠性省部共建重点实验室天津工业大学

【摘要】 电磁声发射技术是一种新型的无损检测技术,通过对金属部件进行电磁加载会在裂纹处激发出声发射信号,并利用这一现象实现对金属材料的无损检测。本文分析了电磁声发射技术的基本原理与实现过程,采用一种基于波形分析的神经网络模式识别方法,利用小波包变换提取出电磁声发射信号波形的识别特征参数,建立了由10个输入单元、18个隐含单元和单输出组成的人工神经网络识别系统。为了克服BP神经网络收敛速度慢的缺点,提出了一种输入单元数目可变的神经网络改进方法,实验表明该系统能够对有无裂纹板进行快速、准确的识别。

【Abstract】 Electromagnetically induced acoustic emission(EMAE) technique is a new nondestructive testing(NDT).It does nondestructive detection with the effect of dynamic electromagnetic loading to generate a stress field stimulating stress waves from the defects.The principle and implementation procedure of the EMAE is analyzed.It adopts the neural network recognition method based on wave analysis.The characteristic parameters of EMAE signal are extracted using wavelet packet transform.The recognition system of back-propagation(BP) network consists of 10 input elements,18 hidden elements and single output.In order to overcome the shortcoming of low constringency speed,this paper proposes a kind of neural network recognition with adaptive number of neurons on the input layer method.The experiment results show it can identify the crack in the metal plate quickly and accurately.

【基金】 supported by the National Natural Science Foundation of China(51077036);the Natural Science Foundation of Hebei Province(E2012202048,E2011202040);the Research and Development Project of Seience and Technology of Hebei Province(11215648)
  • 【文献出处】 电工技术学报 ,Transactions of China Electrotechnical Society , 编辑部邮箱 ,2012年04期
  • 【分类号】TG115.28
  • 【下载频次】237
节点文献中: 

本文链接的文献网络图示:

本文的引文网络