节点文献
分数阶微分方程的初值问题解的存在性
Existence of Solution for Fractional Differential Equationof Initial Value Problem
【摘要】 利用Schauder不动点定理,探讨了非线性分数阶微分方程Dα0,tx(t)=f(t,x(t))的初值问题,其中微分方程的阶数α为区间(2,3]的任意实数,导数形式为Riemann-Liouville型导数。给出了该方程的右端函数f(t,x(t))满足Perron条件,证明了其解的存在性。
【Abstract】 In this note,the initial problem for nonlinear fractional differential equation with order α∈(2,3] and Riemann-Liouville fractional derivative was discussed by employing Schauder fixed theorem.The sufficient conditions for the existence of solutions are derived.
【关键词】 Riemann-Liouville型导数;
perron条件;
存在性;
【Key words】 Riemann-Liouville differentiation; perron condition; existence;
【Key words】 Riemann-Liouville differentiation; perron condition; existence;
- 【文献出处】 太原科技大学学报 ,Journal of Taiyuan University of Science and Technology , 编辑部邮箱 ,2011年02期
- 【分类号】O175.8
- 【被引频次】1
- 【下载频次】151