节点文献

基于EMD及ARMA的自相似网络流量预测

Predicting self-similar networking traffic based on EMD and ARMA

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 高波张钦宇梁永生刘宁宁黄程波张乃通

【Author】 GAO Bo1,2,ZHANG Qin-yu1,LIANG Yong-sheng2,LIU Ning-ning3,HUANG Cheng-bo2,ZHANG Nai-tong4(1.Shenzhen Graduate School,Harbin Institute of Technology,Shenzhen 518055,China;2.Institute of Information Technology,Shenzhen Institute of Information Technology,Shenzhen 518029,China;3.Institute of Electronic System Engineering of China,Beijing 100039,China;4.School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China)

【机构】 哈尔滨工业大学深圳研究生院深圳信息职业技术学院信息技术研究所中国电子系统设备工程公司研究所哈尔滨工业大学电子与信息工程学院

【摘要】 提出了一种基于ARMA(自回归滑动平均)模型的经验模式分解预测自相似网络流量的方法,进行了理论证明和仿真验证。结果表明,经验模式分解对长相关流量有去相关的作用,采用ARMA模型即可对自相似网络流量准确刻画,不但降低了算法的复杂度,而且预测精度高于径向基函数神经网络的预测精度。

【Abstract】 A novel method based on empirical mode decomposition(EMD) and ARMA was proposed to model and fore-cast self-similar networking traffic.The results demonstrate that EMD had the function of getting rid of the long range dependence(LRD) in traffic data.Therefore,the self-similar traffic processed by EMD could be modeled and predicted well by using ARMA which was a short range dependent(SRD) model.Moreover,the complexity of the proposed method was reduced sharply and the prediction precision was higher than radial basis function neural network.

【基金】 国家自然科学基金资助项目(60672150,60702034);国家重点基础研究发展计划(“973”计划)基金资助项目(2009CB320402)~~
  • 【文献出处】 通信学报 ,Journal on Communications , 编辑部邮箱 ,2011年04期
  • 【分类号】TP393.06
  • 【被引频次】141
  • 【下载频次】1313
节点文献中: 

本文链接的文献网络图示:

本文的引文网络