节点文献

Clifford分析中Isotonic柯西型积分的边界性质

The Boundary Behavior of Isotonic Cauchy Type Integral in Clifford Analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 库敏杜金元王道顺

【Author】 Min KU Department of Computer Science and Technology,Tsinghua University, Beijing 100084,P.R.China Jin Yuan DU School of Mathematics and Statistics,Wuhan University,Wuhan 430072,P.R.China Dao Shun WANG Department of Computer Science and Technology,Tsinghua University, Beijing 100084,P.R.China

【机构】 清华大学计算机科学与技术系武汉大学数学与统计学院

【摘要】 本文主要刻画了定义于偶数维欧氏空间中光滑曲面而取值于复Clifford代数的isotonic柯西型积分的边界性质.对具有H(o|¨)lder密度函数的isotonic柯西型积分,得到了Privalov定理和Sokhotskii-Plemelj公式,并证明了多复变函数论中经典Bochner-Martinelli型积分的Privalov定理和Sokhotskii-Plemelj公式为其特殊情形.

【Abstract】 The holomorphic functions of several complex variables are closely related to the so-called isotonic Dirac system in which different Dirac operators in the half dimension act from the left and from the right on the functions considered.In this paper we mainly study the boundary properties of the isotonic Cauchy type integral operator over the smooth surface in Euclidean space of even dimension with values in a complex Clifford algebra.We obtain Privarlov tneorem inducing Sokhotskii-Plemelj formula as the special case for the isotonic Cauchy type integral operator with H(o|¨)lder density functions taking values in a complex Clifford algebra,and show that Privalov theorem of the classical Bochner-Martinelli type integral and the classical Sokhotskii-Plemelj formula over the smooth surface of Euclidean space for holomorphic functions of several complex variables may be derived from it.

【基金】 国家863项目(2009AA011906);国家自然科学基金资助项目(10871150,60873249);博士后基金(20090460316,201003111)
  • 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,2011年02期
  • 【分类号】O172.2
  • 【被引频次】8
  • 【下载频次】167
节点文献中: 

本文链接的文献网络图示:

本文的引文网络