节点文献
非线性分数阶微分方程边值问题正解的存在性
Existence of Positive Solutions for Boundary Value Problems with Nonlinear Fractional Differential Equations
【摘要】 该文研究了下面分数阶微分方程边值问题格林函数的相关性质D0+αu(t)=f(t,u(t)),0<t<1,u(0)=u(1)=u′(0)=u′(1)=0,其中3<α≤4是实数,D0+α是标准的Riemann-Liouville微分,f:[0,1]×[0,∞)→[0,∞)连续.应用格林函数的性质构造了锥,从而应用一些不动点定理得到了正解的存在性.
【Abstract】 In this paper,the authors consider the properties of Green’s function for the nonlinear fractional differential equation boundary-value problem D0+αu(t)=f(t,u(t)),0<t<1, u(0)=u(1)=u’(0)=u’(1)=0, where 3<α≤4 is a real number,and D0+αis the standard Riemann-Liouville differentiation, and f:[0,1]×[0.∞)→[0,∞)is continuous.As an application of Green’s function,the authors give some multiple positive solutions for nonlinear by means of some fixed-point theorem on cones.
【关键词】 分数阶微分方程;
边值问题;
正解;
分数阶格林函数;
不动点定理;
【Key words】 Fractional differential equation; Boundary-value problem; Positive solution; Fractional Green’s function; Fixed-point theorem;
【Key words】 Fractional differential equation; Boundary-value problem; Positive solution; Fractional Green’s function; Fixed-point theorem;
【基金】 中国石油大学(华东)基础研究基金(y070815)资助
- 【文献出处】 数学物理学报 ,Acta Mathematica Scientia , 编辑部邮箱 ,2011年02期
- 【分类号】O175.8
- 【被引频次】41
- 【下载频次】569