节点文献
Koch曲线所围区域内的一类解析函数边值问题
A Class of Boundary Value Problem for Analytic Functions Bounded by the Koch Curve
【摘要】 在经典解析函数边值理论中,当L为复平面上逐段光滑封闭曲线时,在L所围的内部和外部,Cauchy型积分解析;通过对Cauchy主值积分的讨论,可得Cauchy型积分在L上的左、右边值,且边值满足Plemelj公式.基于Koch曲线的构造方法,对一系列Cauchy型积分取极限,并附加上一定的Hlder条件,可得在Koch曲线所围的内部和外部区域内都解析的Cauchy型积分函数,进一步得到与经典解析函数边值问题类似的结果.
【Abstract】 In this paper,based on the formation of Koch Curve,through discussing the Umit function of a sequence of Cauchy-type integrals,a analytic Cauchy-type integral function was obtained in the interior region and exterior region bounded by Koch Curve attaching some Hldercondition.Furthermore,some similar results was got with the classical boundary value problems for analytic functions.
【基金】 国家自然科学基金项目(70771079)
- 【文献出处】 数学的实践与认识 ,Mathematics in Practice and Theory , 编辑部邮箱 ,2011年12期
- 【分类号】O174.5
- 【被引频次】3
- 【下载频次】51