节点文献

基于Gabor小波和支持向量机的掌纹识别算法的研究

THE RESEARCH ON PALMPRINT REGCOGNITION USING GABOR WAVELET AND SUPPORT VECTOR MACHINE

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李明昊李燕华潘新刘洋多化琼

【Author】 LI Ming-hao1,LI Yan-hua1,PAN Xin1,LIU Yang1,DUO Hua-qiong2(1.College of Computer and Information Engineering,Inner Mongolia Agricultural University,Huhhot 010018,Chna; 2.College of Material Science and Art Design,Inner Mongolia Agricultural University,Huhhot 010018,China)

【机构】 内蒙古农业大学计算机与信息工程学院内蒙古农业大学材料科学与艺术设计学院

【摘要】 掌纹识别作为1种新兴的生物识别技术,因其识别区域大、易采集、精度高和可靠性高等优点得到了较快的发展。本文提出基于Gabor小波和支持向量机的掌纹识别算法。算法主要分三个步骤,首先将掌纹图像用5个尺度4个方向的2DGabor滤波器组对图像进行滤波并下采样得到Gabor特征矩阵,之后用二维主成分分析(two-dimen-sional principle component analysis2,DPCA)进行降维,最后将得到的特征向量送进支持向量机(support vector machine,SVM)进行学习分类。实验结果表明,该算法能够很好的解决小样本识别问题,有效的提高掌纹识别率。

【Abstract】 As an emerging biometric technology,palmprint recognition technology has been developed quickly because of the advantages of its large recognition region,and easy collection,high precision and reliability.This paper proposes a palmprint identification algorithm based on Gabor wavelet and support vector machine(SVM).Three steps are involved in the algorithm.First,the palmprint image was filtered by a bank of 2DGabor wavelets with five scales and four directions and downsampled to form Gabor feature matrix.Then two-dimensional principle component analysis(2DPCA) was used to extract the features into a lower dimension space.Last,SVM was used to classify the feature vectors.Experimental results showed that this algorithm could solve the small sample recognition problem and improve palmprint recognition rate significantly.

【基金】 国家自然科学基金资助项目(30960303,61063021);内蒙古自治区高等学校科学研究项目(NJ10057)
  • 【文献出处】 内蒙古农业大学学报(自然科学版) ,Journal of Inner Mongolia Agricultural University(Natural Science Edition) , 编辑部邮箱 ,2011年03期
  • 【分类号】TP391.41
  • 【被引频次】14
  • 【下载频次】133
节点文献中: 

本文链接的文献网络图示:

本文的引文网络