节点文献

基于贝叶斯网的PCB微小孔钻孔质量建模研究

Research of PCB micro-drilling quality modeling based on bayesian-networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 董晔弘向东段广洪刘畅

【Author】 DONG Ye-hong,XIANG Dong,DUAN Guang-hong,LIU Chang(Department of Precision Instruments and Mechanology,Tsinghua University,Beijing 100084,China)

【机构】 清华大学精密仪器及机械学系

【摘要】 利用贝叶斯网对印刷线路板(PCB)微小孔钻孔工艺的孔壁粗糙度进行建模。首先通过鱼骨图对钻孔质量的影响因素进行整理和筛选,确定可用于建模的因素;然后采用灰色关联法对各因素与孔壁粗糙度的关系进行分析,并以此为依据精简次要因素和建立贝叶斯网模型结构;最后在实验数据和生产线采样数据的基础上对模型的条件概率表进行学习与进化。经过检验,模型在进化过程中精度能不断提高,并且当数据量较少的情况下,贝叶斯网能够获得比线性回归及BP神经网络模型更高的精度。

【Abstract】 Bayesian-Network was used to modeling the hole-wall roughness occurred in PCB micro-drilling.First,the influence factors of drilling quality was arranged and selected with the help of fishbone diagram.Second,Grey-Relation method was employed to analyze the relationships between hole-wall roughness and factors.Then the minor factors were removed and the model structure was built accordingly.Last the Conditional Probability Table was learnt and evolved with the data obtained from organized experiment and product line sampling.It was verified that the prediction accuracy increased with the model evolving.The accuracy of Bayesian Network was higher than that of linear regression and BP neural network in conditions of small data amount.

【基金】 “十一五”国家科技支撑计划项目(2006BAF02A01),“十一五”国家科技支撑计划项目(2006BAF02A02)
  • 【文献出处】 机械设计与制造 ,Machinery Design & Manufacture , 编辑部邮箱 ,2011年04期
  • 【分类号】TG52
  • 【被引频次】3
  • 【下载频次】131
节点文献中: 

本文链接的文献网络图示:

本文的引文网络