节点文献

基于小波变换和去噪模型的光照不变人脸识别

Illumination invariant face recognition based on wavelet transform and denoising model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曹雪余立功杨静宇

【Author】 CAO Xue,YU Li-gong,YANG Jing-yu(School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)

【机构】 南京理工大学计算机科学与技术学院

【摘要】 针对正面光照人脸识别的难点,提出了一种应用小波变换和去噪模型的光照不变人脸识别算法。利用对图像的高频小波系数进行处理并运用去噪模型,提取光照人脸图像中的光照不变量,同时增强图像边缘特征,这有利于提取的光照不变量保持更多的人脸识别信息。在Yale B和CMU PIE人脸库上的实验结果表明,所提算法可以显著提高光照人脸图像的识别率。

【Abstract】 The recognition of frontal facial appearance with illumination is a difficult task for face recognition.In this paper,a novel illumination invariant extraction method was proposed to deal with the illumination problem based on wavelet transform and denoising model.The illumination invariant was extracted in wavelet domain by using wavelet-based denoising techniques.Through manipulating the high frequency wavelet coefficient combined with denoising model,the edge features of the illumination invariants were enhanced and more useful information was restored in illumination invariants,which could lead to an excellent face recognition performance.The experimental results on Yale face database B and CMU PIE face database show that satisfactory recognition rate can be achieved by the proposed method.

  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2011年08期
  • 【分类号】TP391.41
  • 【被引频次】14
  • 【下载频次】312
节点文献中: 

本文链接的文献网络图示:

本文的引文网络