节点文献

剥蚀引起的球锥体两相绕流效应

Effect of two-phase flow past sphere-conic surface caused by denudation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄海明徐晓亮章梓茂

【Author】 HUANG Hai-ming,XU Xiao-liang,ZHANG Zi-mao(Institute of Engineering Mechanics,Beijing Jiaotong University,Beijing 100044,China)

【机构】 北京交通大学工程力学研究所

【摘要】 基于多学科理论建立了极端环境下球锥体烧蚀、剥蚀的数理模型。利用离散涡方法计算流场与球锥表面压力分布,采用三方程烧蚀模型计算热化学控制机制下的烧蚀速率;引入颗粒轨道模型求解剥蚀颗粒的运动,编程计算高温高压燃烧室内球锥形烧蚀试件的绕流场及剥蚀颗粒的运动轨迹。研究表明:烧蚀对球锥体的绕流影响显著,球锥体的涡云较快地转变为不对称结构;且随着时间的增长,烧蚀球锥的线动量逐渐高于无烧蚀球锥的。剥落的颗粒总在涡云附近聚积,且随着涡云转变为不对称结构,颗粒的运动迹线不再对称,颗粒分布将逐渐变得杂乱无章。该研究可为热防护设计提供参考。

【Abstract】 Based on multi-disciplinary theory,a numerical model for solving ablation,denudation in a high temperature and high pressure environment is proposed.In this model,the discrete vortex method(DVM) is used in simulating flow field and pressure distribution on the sphere-conic surface;a commonly three-equations model under the thermal-chemical control mechanism is introduced for resolving the ablation loss after compared with the results under the diffusion control mechanism;furthermore,the denudation loss is simplified by releasing a series of particles on the sphere-conic surface at regular intervals,and a trajectory model is adopted for solving the particles motion.Codes are written and performed well for simulating the flow field and particles motion in a high temperature and high pressure blaster chamber.As results indicated,the ablation results in a remarkable effect on the sphere-conic surface and the vortex contour changes to a asymmetric structure;as time goes on,the linear momentum of the ablating sphere-conic surface becomes larger than the non-ablating one.The particles are accumulated at the vortex contour,when the vortex contour turns to an asymmetric structure,the particle traces are no longer symmetric,and the particle distribution will be haphazard.

【关键词】 烧蚀剥蚀两相流离散涡方法
【Key words】 ablationdenudationtwo-phase flowdiscrete vortex method
  • 【文献出处】 计算力学学报 ,Chinese Journal of Computational Mechanics , 编辑部邮箱 ,2011年03期
  • 【分类号】O359.1
  • 【下载频次】82
节点文献中: 

本文链接的文献网络图示:

本文的引文网络