节点文献
利用偏微分方程的Tetrolet变换图像去噪
Tetrolet Shrinkage with Partial Differential Equations for Image Denoising
【摘要】 对图像进行Tetrolet变换后利用偏微分方程对图像进行了质量改善,仿真结果表明,该算法不仅能有效去除噪声,而且可得到更高的峰值信噪比和更好的视觉效果,去噪后图像较光滑,减少了方块效应,更多地保留了图像边缘和细节等局部特征.
【Abstract】 After tetrolet transform was applied to the noise images,the conventional smooth shrinkage results were further processed by partial differential equations.The simulation results indicated that the method not only remove the noise effectively,but also can obtain higher PSNR(Peak Signal to Noise Ratio) and better visual effects.Compared with typical tetrolet transform,the denoised images by our method were smoother,and the blocking artifacts were reduced,and which preserved more significant information of original images,such as edges and details.
【关键词】 Tetrolet变换;
方块效应;
偏微分方程;
图像去噪;
【Key words】 Tetrolet transform; blocking artifacts; partial differential equations; image denoising;
【Key words】 Tetrolet transform; blocking artifacts; partial differential equations; image denoising;
【基金】 国家自然科学基金项目(40901216);国防预研资助项目(513220206)
- 【文献出处】 海南大学学报(自然科学版) ,Natural Science Journal of Hainan University , 编辑部邮箱 ,2011年02期
- 【分类号】TP391.41
- 【被引频次】5
- 【下载频次】142