节点文献
基于GCV的LS-SVM模型选择在个人信用评估中的应用
Research and Application of LS-SVM Model Selection Based on GCV in Individual Credit Appraisal
【摘要】 针对个人信用评估中数据海量性以及与影响因素之间的非线性问题,利用最小二乘支持向量机(LS-SVM)中基于GCV准则和Newton-Raphson算法的正则化参数快速选择方法建立新的个人信用风险预测模型.并把该模型与Fisher线性判别分析、Logistic回归以及半参数广义可加模型的判别效果进行了实证比较分析.结果表明该方法不仅具有快速高效的模型选择能力,并且具有较优的判别预测能力.
【Abstract】 In view of massive individual credit data as well as non-linear relation between credit and its influencing factors,a new individual credit risk forecast model is established using LS-SVM,in which regularization parameter is selected based on the GCV criterion and the Newton-Raphson algorithm.Distinction effects are compared among the new model,Fisher linear discriminant analysis,Logistic regression as well as generalized additive model.The results show that the proposed method not only has the effective model selection ability,but also has the superior distinction predictive ability.
【Key words】 LS-SVM; GCV; Newton-Raphson iteration; model selection; individual credit evaluation;
- 【文献出处】 河南大学学报(自然科学版) ,Journal of Henan University(Natural Science) , 编辑部邮箱 ,2011年03期
- 【分类号】F832.2;F224
- 【被引频次】11
- 【下载频次】239