节点文献
基于CRF和转换错误驱动学习的浅层句法分析
Shallow Parsing Based on CRF and Transformation-based Error-driven Learning
【摘要】 本文提出一种CRF和基于转换错误驱动相结合的中文浅层句法分析方法。该方法应用于宾州大学中文树库,取得不错的组块识别效果。在CRF识别的基础上,对初始识别结果中的组块标注信息进行统计分析,获得候选转换规则集合;再根据定义的规则评价函数对候选集进行筛选,得到最终的转换规则集合;最后应用转换规则集对CRF标注的结果进行校正。实验结果表明,与单独使用CRF结果相比,组块识别的精确率、召回率以及F值均得到了提高。
【Abstract】 This paper proposes a method for shallow parsing on the basis of CRF and transformation-based error-driven learning.The method is applied to Penn Chinese Treebank and gets a good performance of chunking identification.First,CRF model is used to identify chunks to acquire candidate transformation rules by error-driven learning.Then,an evaluation function is used to filter candidate transformation rules.And last,transformation rules are used to revise the chunking results of CRF.The experimental results show that this approach is effective,and outperforms the single CRF-based approach in shallow parsing.Precision,recall and F-values are improved respectively.
【Key words】 shallow parsing; CRF; transformation-based error-driven learning; transformation rules;
- 【文献出处】 广西师范大学学报(自然科学版) ,Journal of Guangxi Normal University(Natural Science Edition) , 编辑部邮箱 ,2011年03期
- 【分类号】TP391.1
- 【被引频次】7
- 【下载频次】113