节点文献
由Baouendi-Grushin向量场构成的退化椭圆方程组弱解梯度的L~p估计
L~p estimates for gradients of weak solutions to degenerate elliptic systems constituted by Baouendi-Grushin vector fields
【摘要】 研究了一类与Baouendi-Grushin向量场族相关的具有不连续系数的退化椭圆方程组.通过建立Caccioppoli型不等式并利用反向Hlder不等式,得到了该类方程组弱解梯度的局部Lp估计,从而提升了弱解的光滑性.
【Abstract】 A class of degenerate elliptic systems related to Baouendi-Grushin vector fields are studied when the coefficients are discontinuous.By establishing a Caccioppoli inequality and using the reverse Hlder inequality,the Lp estimates for the gradients of weak solutions to the system are obtained and the regularity of the weak solution is lifted.
【关键词】 退化椭圆方程组;
Baouendi-Grushin向量场;
VMO函数;
Lp估计;
【Key words】 degenerate elliptic systems; Baouendi-Grushin vector fields; VMO function; Lp estimate;
【Key words】 degenerate elliptic systems; Baouendi-Grushin vector fields; VMO function; Lp estimate;
- 【文献出处】 纺织高校基础科学学报 ,Basic Sciences Journal of Textile Universities , 编辑部邮箱 ,2011年03期
- 【分类号】O175.25
- 【被引频次】3
- 【下载频次】40