节点文献

稀疏在线无偏置最小二乘支持向量机的预测控制

Predictive control using sparse online non-bias LSSVM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 周欣然滕召胜蒋星军

【Author】 Zhou Xinran1,2 Teng Zhaosheng2 Jiang Xingjun 3(1.School of Information Science and Engineering,Central South University,Changsha 410075,China; 2.College of Electrical and Information Engineering,Hunan University,Changsha 410082,China; 3.Department of Information Engineering;Hunan Radio & TV University,Changsha 410004,China)

【机构】 中南大学信息科学与工程学院湖南大学电气与信息工程学院湖南广播电视大学计算机系

【摘要】 针对非线性预测控制中的预测模型,设计了稀疏在线无偏置最小二乘支持向量机(SONB-LSSVM),并提出了基于SONB-LSSVM的有约束单步预测控制算法。在每个控制周期,该SONB-LSSVM递推地学习新样本,并删除贡献最小样本。该样本删除技巧能提高学习样本集的多样性和代表性;与ONB-LSSVM相比,SONB-LSSVM的泛化性能受输入信号频率影响较小。控制量由Brent优化方法计算。由于SONB-LSSVM能及时学习过程动态新特性,该预测控制方法具有良好的自适应能力.液位控制仿真表明,在多种波形的期望输出并有扰动情况下该预测控制方法都是有效的。

【Abstract】 Aiming at predicting model of nonlinear predictive control,a sparse online non-bias least square support vector machine(SONB-LSSVM) is designed,and a constrained single-step-ahead predictive control(PC) is proposed utiliz-ing SONB-LSSVM.During per controlling period,the SONB-LSSVM studies new sample and removes the least important one recursively.The skill for deleting sample can improve diversity and representative capacity of the training sample set;generalization of SONB-LSSVM is less affected by the input signal frequency compared with ONB-LSSVM.The control values are computed via Brent optimization method.Because SONB-LSSVM can study new dynamic properties of process in time,the predictive control strategy possesses excellent adaptation.Simulation results of liquid-level process control show the validity of the predictive control in various waveform expected output case with disturbance existing.

【基金】 国家自然科学基金(编号:60872128)资助项目;湖南省科学技术厅(编号:2009FJ3077)资助项目
  • 【文献出处】 电子测量与仪器学报 ,Journal of Electronic Measurement and Instrument , 编辑部邮箱 ,2011年04期
  • 【分类号】TP18
  • 【被引频次】17
  • 【下载频次】208
节点文献中: 

本文链接的文献网络图示:

本文的引文网络