节点文献
基于单调邻域粗糙集的特征基因提取
The Extract of Feature Gene Based on Monotonicity Neighborhood Rough Set
【摘要】 为了避免连续数据离散化处理时造成的信息损失,降低样本属性邻域求解的复杂度,提高特征基因提取的效率。该文在单调度量空间上,提出了一种基于单调邻域粗糙集的特征基因提取方法。并在两个标准的基因表达数据上进行了实验,结果证明该方法是有效可行的。
【Abstract】 In order to avoid the information losing when dispersing serial data,Lower complexity of sample attribute solving neighborhood,improve the efficiency of extracting characteristics gene.In this paper,on the monotonicity metric space,proposes a gene extraction method based on montonicity neighborhood rough set.And experiments it on the two standard gene expression data,the result proves that the method is effective and feasible.
【关键词】 粗糙集;
单调邻域;
特征基因;
属性约简;
【Key words】 rough set; monotonicity neighborhood; characteristics gene; attribute reduction;
【Key words】 rough set; monotonicity neighborhood; characteristics gene; attribute reduction;
- 【文献出处】 电脑知识与技术 ,Computer Knowledge and Technology , 编辑部邮箱 ,2011年19期
- 【分类号】TP18
- 【下载频次】54