节点文献

机器视觉钢化玻璃绝缘子气泡的缺陷检测研究

Research on Defect Detection Based on Machine Vision for Bubbles in Toughened Glass Insulator

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈艳燕王云叶含笑吴洪潭崔志尚

【Author】 Chen Yanyan Wang Yun Ye Hanxiao,et al.

【机构】 中国计量学院质量与安全工程学院浙江省绍兴市党校信息中心浙江中医药大学信息技术学院

【摘要】 目前国内外大部分公司采用人工检测法来检测玻璃件的缺陷,由于这种方法受检验人员主观因素影响较大,难以适应大规模自动化生产的需要,为此,提出一种基于机器视觉的气泡缺陷检测方法。分别介绍了几种经典边缘检测算子的锐化以及基于几何特征的气泡缺陷提取方法,并对检测结果进行了比较。实验结果表明,基于面积特征和圆形度的气泡缺陷提取方法能准确地检测出钢化玻璃绝缘子中的气泡缺陷。

【Abstract】 At present,most of the manufacturers of glass products are using manual detecting method to check the defects in the parts.This is definitely not suitable for large-scaled automatic production because of the influence from subjective factor of the inspectors.Thus the detection method for bubble defects in glass based on machine vision is proposed.Several classical edge detection algorithms sharpening and bubble defect extraction based on geometrical features are introduced,and the detecting results are compared.The experimental results indicate that the extraction methods based on area feature and roundness can precisely detect the bubble defects in toughened glass insulators.

  • 【文献出处】 自动化仪表 ,Process Automation Instrumentation , 编辑部邮箱 ,2010年07期
  • 【分类号】TP391.41
  • 【被引频次】11
  • 【下载频次】372
节点文献中: 

本文链接的文献网络图示:

本文的引文网络