节点文献

采用自适应自回归小波神经网络的单步预测控制

One-step-ahead Predictive Control Using Adaptive Self-recurrent Wavelet Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨红高月芳罗飞许玉格

【Author】 YANG Hong~(1,3),GAO Yuefang~2,LUO Fei~3,XU Yuge~3 (1.School of Physics and Electronic Engineering,Guangzhou University,Guangzhou 510006,China; 2.Department of Software Engineering,Shenzhen Institute of Information Technology,Shenzhen 518029,China; 3.College of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,China)

【机构】 广州大学物理与电子工程学院华南理工大学自动化科学与工程学院深圳信息职业技术学院软件工程系

【摘要】 针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模型,引入输出反馈和偏差校正克服预测误差,以此构造一步加权预测控制性能指标.然后采用Brent一维搜索方法求取控制律,Brent法无需任何相关的导数信息,需调整的参数少,使得Brent法适合实时控制.仿真研究说明了该非线性预测控制器的有效性.

【Abstract】 A one-step-ahead predictive control algorithm via neural network identification is proposed for the control of nonlinear systems.The algorithm eliminates the defect that neural networks are prone to be trapped in local minimum through utilizing chaos mechanism based on self-recurrent wavelet neural networks.Then adaptive learning ratio is adopted to enhance convergence ability and speed of neural networks.As the neural network being predictive model and the output feedback and deviation rectification being introduced to reduce predictive error,a one-step-ahead weighted predictive control performance index is formulated.Lastly,the control law is derived via Brent optimization method which is efficient and reliable in one dimension search without knowing any relative derivative information.The method has less parameters to choose,which is very suitable for real-time control.The simulation shows that the presented method is effective.

【基金】 国家自然科学基金资助项目(60774032);教育部高等学校博士学科点专项科研基金资助项目(新教师基金课题)(20070561006);广东省自然科学基金博士启动项目(9451802904003344,9451064101002853)
  • 【文献出处】 信息与控制 ,Information and Control , 编辑部邮箱 ,2010年05期
  • 【分类号】TP183
  • 【被引频次】4
  • 【下载频次】232
节点文献中: 

本文链接的文献网络图示:

本文的引文网络