节点文献

改进的k-均值算法在聚类分析中的应用

Application of improved k-means algorithm based on clusering anlysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 顾洪博张继怀

【Author】 GU Hong-bo1,ZHANG Ji-huai2 (1.School of Computer & Information Technology,Daqing Petroleum Institute,Daqing 163318,China;2.Ranghulu District Government Information Center,Daqing 163712,China)

【机构】 大庆石油学院计算机与信息技术学院大庆市让胡路区政府信息中心

【摘要】 介绍了在聚类中广泛应用的经典k-均值算法,并针对其易受随机选择初始聚类中心和孤立点的影响的不足,给出了改进的k-均值算法。首先使用距离法移除孤立点,然后采用邻近吸收法对初始聚类中心的选择进行了改进。并做了改进前后的对比实验和应用。结果表明,改进后的算法比较稳定、准确,受孤立点和随机选择初始聚类中心的影响也有所降低。

【Abstract】 The classic algorithm of k-means is discussed,that is one of the most widespread methods in clustering,including both strongpoints and shortages.Not only it is sensitive to the original clustering center,but also it may be affectedby the outliers.Given these shortages,an improved algorithm is discussed,which makes improvements in outliers and selection of original clustering center.The outlier detection based on the distance method.To select original clustering center based on the nearest neighbour assimilated.Check experiment was done,which indicates the improved one is more stable,more accurate and the affection by the outliers is much low.

【基金】 黑龙江省自然科学基金项目(F200603);黑龙江省教育厅科学技术研究项目(11521008)
  • 【文献出处】 西安科技大学学报 ,Journal of Xi’an University of Science and Technology , 编辑部邮箱 ,2010年04期
  • 【分类号】TP301.6
  • 【被引频次】9
  • 【下载频次】444
节点文献中: 

本文链接的文献网络图示:

本文的引文网络