节点文献

平均跟踪性与双曲线性同胚

AVERAGE-SHADOWING PROPERTY AND HYPERBOLIC LINEAR HOMEOMORPHISM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邱祎董彦彦赵俊玲

【Author】 QIU Yi1, DONG Yan-yan2 , ZHAO Jun-ling3 (1. Henan College of Finance and Taxation, Zhengzhou 450002, China) (2. Physical Education Institute, Zhengzhou University, Zhengzhou 450044, China) (3. Math. Science College, Guangxi Normal University, Guilin 541004, China)

【机构】 河南财政税务高等专科学校郑州大学体育学院广西师范大学数学科学学院

【摘要】 本文研究了双曲线性自同胚的平均跟踪性.利用双曲线性映射的性质和压缩映射定理,得到了在有界的Banach空间上的双曲线性自同胚具有平均跟踪性.另外,证明了在一般的度量空间上的压缩映射也具有平均跟踪性.

【Abstract】 In this article, we study the average-shadowing property (ASP) of the hyperbolic linear homeomorphism. By means of property of hyperbolic linear mapping and contraction mapping principle, we obtain that the hyperbolic linear homeomorphism has ASP in bounded Banach space. In addition, we prove that the contraction mapping has ASP in general metric space.

【基金】 国家自然科学基金(10461002)
  • 【文献出处】 数学杂志 ,Journal of Mathematics , 编辑部邮箱 ,2010年06期
  • 【分类号】O189.1
  • 【下载频次】54
节点文献中: 

本文链接的文献网络图示:

本文的引文网络