节点文献
席位分配问题的有界整数变量规划模型及其应用
The Bounded Integral Variable Nonlinear Programming Models of Seat Apportionment and its application
【摘要】 对席位分配问题进行再研究,以公平分摊性公理为基础,分别从议员公平性、公民公平性和州公平性的角度出发建立了三个相应的数学模型,它们都可归结为有界整数变量非线性规划模型.给出三个席位分配模型的一个统一算法,算法简单有效.最后给出了模型应用实例.
【Abstract】 On the basis of the fair shares axiom,the problem of seat apportionment was researched,and three corresponding mathematical models that all can be summed up as the bounded integral variable nonlinear programming models were established from the view of fairness for congressman,citizens and states,respectively.Furthermore,a unified algorithm for three seat apportionment models was given,which is effective and simple.Finally,the appling cases of these models were given.
【关键词】 席位分配模型;
公平分摊性公理;
有界整数变量非线性规划;
【Key words】 the seat apportionment model; the fair shares axiom; bounded integral variable non-linear programming;
【Key words】 the seat apportionment model; the fair shares axiom; bounded integral variable non-linear programming;
【基金】 北京市高科技创新平台项目(201098)
- 【文献出处】 数学的实践与认识 ,Mathematics in Practice and Theory , 编辑部邮箱 ,2010年20期
- 【分类号】O221.4
- 【被引频次】3
- 【下载频次】316