节点文献

形态小波域声纳图像去噪算法

Sonar Image Denoising Algorithm in Morphological Wavelet Domain

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 桑恩方沈郑燕卞红雨葛光涛

【Author】 Sang Enfang,Shen Zhengyan,Bian Hongyu,Ge Guangtao(Underwater Acoustics Technology Key Lab of Science and Technology for National Defense,Harbin Engineering University,Harbin,150001,China)

【机构】 哈尔滨工程大学水声技术国防科技重点实验室

【摘要】 为解决声纳图像易受噪声污染、对比度降低的问题,提出一种形态小波域图像去噪算法。首先构造了可以用于灰度图像处理的形态中值小波,并在实现完备重构的基础上对中值小波进行了提升;然后利用提升后的形态小波,以移位抽取的方式对声纳图像进行完整的形态多分辨率分析;经阈值处理后,最终通过各重构图像的加权平均得到理想的去噪效果。仿真实验表明,形态小波域去噪算法在去除噪声的同时能完好保留图像边缘等重要细节,与传统的小波阈值去噪方法比较,对比度有所提高,图像更加清晰。

【Abstract】 Sonar images are susceptible to noise pollution,thus resulting in lower contrast.To resolve this problem,this paper proposes an image denoising algorithm in morphological wavelet domain.Firstly,a morphological median wavelet is constructed for gray image processing.On the basis of achieving reconstruction without the redundance,the median wavelet is lifted.Then,the sonar image is analyzed in different multiresolutions by shifting decomposition and the lifted morphological wavelet.Finally, after threshold processing,a desired denoising effect is obtained by the weighted average of different reconstructed images.Computer simulations show that the denoising algorithm in the morphological domain can retain important details,such as image edge and so on.Compared with the traditional wavelet denoising method using the threshold,the contrast is enhanced and the image is clearer.

  • 【文献出处】 数据采集与处理 ,Journal of Data Acquisition and Processing , 编辑部邮箱 ,2010年03期
  • 【分类号】TP391.41
  • 【被引频次】24
  • 【下载频次】355
节点文献中: 

本文链接的文献网络图示:

本文的引文网络