节点文献
等离子体分段线性电流密度递归卷积时域有限差分算法数值误差分析
Numerical Error Analysis of the Piecewise Linear Current Density Recursive Convolution FDTD Methods for Plasmas
【摘要】 推导了新型高效求解适合等离子体介质麦克斯韦方程的分段线性电流密度递归卷积时域有限差分(PL-CDRC-FDTD)算法的三维(3-D)数值色散关系,通过与解析折射率的比较,得到数值折射率的实部与虚部的相对误差。并且讨论了数值折射率的实部与虚部的相对误差与不同参量(电磁波频率、等离子体频率及碰撞频率)之间的关系。
【Abstract】 The three-dimensional(3-D) numerical dispersion relation of the piecewise linear current density recursive convolution finite-difference time-domain(PLCDRC-FDTD) method as a means of solving Maxwell’s equations for plasma is derived in this paper.With the numerical dispersion relation,the numerical errors caused by the PLCDRC-FDTD method are investigated by comparing the real part and imaginary part of a numerical index of refraction with those of an analytic index of refraction.The relationship between the numerical relative errors of the real part and imaginary part of numerical index refraction and different parameters(i.e.,EM wave frequency,plasma frequency and collision frequency) are studied.
【Key words】 plasma; numerical dispersion relation; numerical error; FDTD method;
- 【文献出处】 南昌大学学报(理科版) ,Journal of Nanchang University(Natural Science) , 编辑部邮箱 ,2010年02期
- 【分类号】O441.4
- 【被引频次】1
- 【下载频次】131