节点文献

煤与瓦斯突出指标预测模型及其试验软件设计

Forecast Model of Coal and Gas Outburst Indexes and Testing Software Design

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 侯少杰程远平周红星吴祥刘杰

【Author】 HOU Shao-jie1,2, CHENG Yuan-ping1, ZHOU Hong-xing1, WU Xiang1, LIU Jie1 (1. National Engineering Research Center for Coal & Gas Control, China University of Mining & Technology, Xuzhou 221008, China; 2. Computer Center, Hebei University of Economics and Trade, Shijiazhuang 050061, China)

【机构】 中国矿业大学煤矿瓦斯治理国家工程研究中心河北经贸大学计算机中心

【摘要】 基于动态RBF神经网络理论,提出了煤与瓦斯突出指标的预测模型,设计了模型的在线学习算法,研发了预测模型的试验软件并在祁南煤矿714工作面进行试验。结果表明,该模型能做出可靠的指标预测,提前预警超临界值的趋势,提高防突工程效率,保证煤与瓦斯安全高效的开采。

【Abstract】 The research embarked from dynamic RBF neural network, proposed forecast model of the coal and gas outburst indexes, designed online study algorithm and developed related software tested in 714 face of Qinan Mine. The result show that the model can make the reliable prediction indexes, forewarn supercritical tendency ahead of time, improve the efficiency in prevention project, and ensure safe and high-efficient exploitation of coal and gas.

【基金】 国家自然科学基金项目(50674089);国家重点基础研究“973”项目(2005CB221503);国家自然科学基金重点项目(70533050)
  • 【文献出处】 煤矿机械 ,Coal Mine Machinery , 编辑部邮箱 ,2010年03期
  • 【分类号】TD713
  • 【被引频次】9
  • 【下载频次】237
节点文献中: 

本文链接的文献网络图示:

本文的引文网络