节点文献
一类非高斯噪声的统计特性及其去噪研究
Statistics of One Special of Non-Gaussian Noise and Noise Resolving
【摘要】 首先利用多尺度小波包变换良好的时频局部分析能力,对一类非高斯噪声——双模噪声的统计特性进行研究;其次,详细研究了利用小波包变换和随机共振来消除信号中夹杂的双模噪声。理论分析和仿真表明:此方法具有计算量小、算法比较简单和实时性较强的特点,不仅实现了将非高斯噪声——双模噪声转化为简单的高斯噪声来处理,而且比传统的高阶统计量的处理方法要优越。
【Abstract】 On the basis of time-frequency analysis capabilities of multi-scale wavelet packet transform,this paper firstly studies statistics of one special of non-Gaussian noise that is bimodal noise.Then,wavelet packet and stochastic resonance to deal with bimodal noise are discussed.Theoretical analysis and simulation results show that this method has a small amount of calculation,simple algorithm and strong real-time characteristics.It not only transforms non-Gaussian noise(bimodal noise)into Gaussian noise,but also is better than the traditional higher-order statistics method.
【Key words】 Wavelet packet transform; Non-Gaussian noise; Dual-mode noise; Stochastic resonance;
- 【文献出处】 河南科技大学学报(自然科学版) ,Journal of Henan University of Science & Technology(Natural Science) , 编辑部邮箱 ,2010年05期
- 【分类号】TN911.4
- 【下载频次】248