节点文献

基于单目视觉的机器人Monte Carlo自定位方法

Monocular vision based Monte Carlo localization for mobile robot

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘洞波刘国荣喻妙华

【Author】 LIU Dong-bo1,2,LIU Guo-rong1,2,YU Miao-hua2(1.College of Electrical and Information Engineering,Hu’nan University,Changsha 410082,China; 2. Department of Computer and Communication,Hu’nan Institute of Engineering,Xiangtan 411104,China. )

【机构】 湖南大学电气与信息工程学院湖南工程学院计算机与通信学院

【摘要】 针对单目视觉机器人定位问题,提出一种基于改进的尺度不变特征变换(SIFT)的Monte Carlo自定位方法.应用改进的SIFT方法提取特征,既能保证对图像光强变化、尺度缩放、三维视角和噪声具有不变性,又能减少SIFT算法产生的特征点及其抽取和匹配的时间.在机器人移动过程中,环境特征点的观测信息和里程计信息通过粒子滤波相融合,获得了更准确的环境标志点坐标.仿真实验结果验证了该方法的有效性.

【Abstract】 To deal with the localization problem of robot equipped with monocular camera,a Monte Carlo method based on scale invariant feature transform (SIFT) is proposed. The features are extracted by modified SIFT to make the features invariant to changes in illumination,scale,3D viewpoint and noise,and to reduce the number of features generated by SIFT as well as their extraction and matching time. During robot motion,the information from feature observations is fused with that from the odometry by particle filter,so more exact coordinates of the features are gotten. Experimental results show the effectiveness of the approach.

【基金】 湖南省教育厅科研基金项目(08C224);湖南省自然科学基金项目(05JJ40093)
  • 【文献出处】 控制与决策 ,Control and Decision , 编辑部邮箱 ,2010年02期
  • 【分类号】TP242
  • 【被引频次】8
  • 【下载频次】375
节点文献中: 

本文链接的文献网络图示:

本文的引文网络