节点文献
一种基于本体相似度计算的文本聚类算法研究
Study on Text Clustering Algorithm Based on Similarity Measurement of Ontology
【摘要】 为了改善文本聚类的质量,得到满意的聚类结果,针对文本聚类缺少涉及概念的内涵及概念间的联系,提出了一种基于本体相似度计算的文本聚类算法TCBO(Text Clustering Basedon Ontology)。该算法把文档用本体来刻画,以便描述概念的内涵及概念间的联系。设计和改进了文本相似度计算算法,应用本体的语义相似度来度量文档间相近程度,设计了具体的根据相似度进行文本聚类的算法。实验证明,该方法从聚类的准确性和聚类的关联度方面改善了聚类质量。
【Abstract】 To improve the quality of text clustering and get the satisfactory clustering results,we proposed a text clustering based on similarity of ontology.By organizing text as ontology,we were easy to represent the meanings and relations of concepts.We designed and improved the measurement of similarity and measured the text similarity by similarity of text ontology,we designed the algorithm of text clustering based on similarity.Experiments show that our method can avoid using the term isolation and high-dimensional,and can improve the clustering quality in correction degree and association degree.
- 【文献出处】 计算机科学 ,Computer Science , 编辑部邮箱 ,2010年09期
- 【分类号】TP311.13
- 【被引频次】30
- 【下载频次】633