节点文献

GA在特征选择中的应用与设计研究

Research on application and design of GA in feature selection

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 何绍荣朱颢东

【Author】 HE Shao-rong,ZHU Hao-dong 1.Department of Computer Science,Sichuan University of Science & Engineering,Zigong,Sichuan 643000,China 2.College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China 3.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China

【机构】 四川理工学院计算机科学系郑州轻工业学院计算机与通信工程学院中国科学院成都计算机应用研究所

【摘要】 从海量文本集中选择较优秀的特征子集是文本分类中的一个NP-难问题。而对于NP-问题,遗传算法往往能够有效地加以解决。为了克服传统遗传算法的"漂移"和"早敛"问题,首先引入了粗糙集并在此基础上详细设计了适应度函数、自适应交叉算子、自适应变异算子以及合理的终止条件。以此遗传算法为基础设计了一个特征选择算法。在复旦大学提供的语料库上进行了试验验证。实验结果表明此特征选择算法性能良好。

【Abstract】 It is a NP-question to choose more representative feature subset from massive Chinese data set in text categoriza-tion.With regard to the NP-question,genetic algorithm is often able to solve it effectively.In order to overcome "Drift" prob-lem and"Early converges"problem of traditional genetic algorithm,this article firstly introduces rough sets and designs the fitness function,adaptive crossover operator,adaptive mutation operator and reasonable termination conditions.And then a fea-ture selection algorithm is presented based on the designed genetic algorithm.Finally,the feature selection algorithm is validat-ed by means of the corpus which is provided by Fudan University.Experiment results show that the proposed feature selec-tion algorithm has good performance.

【基金】 四川省科技计划项目(No.2008GZ0003)
  • 【文献出处】 计算机工程与应用 ,Computer Engineering and Applications , 编辑部邮箱 ,2010年27期
  • 【分类号】TP391.1
  • 【被引频次】4
  • 【下载频次】114
节点文献中: 

本文链接的文献网络图示:

本文的引文网络