节点文献
区域的对数导数单叶性内径
The inner radius of univalency by pre-Schwarzian derivative
【摘要】 在万有Teichmller空间的对数导数嵌入模型T1(△)中,我们证明了存在无穷多个点[h]∈LT1(△),h(△)相互不Mbius等价,它们到边界的距离均为1,而在万有Teichmller空间的Schwarz导数嵌入模型T(△)中,只有一个点Sid具有类似性质.论文还得到了万有Teichmller空间两类嵌入模型的测地线的一些新的性质.
【Abstract】 In this paper, we find that in the pre-Schwarzian derivative embedding model of universal Teichmller space T1(△), there are infinitely many [h] ∈ L■T1(△) such that h(△) are not Mbius equivalent to each other and the distance from each point [h] to the boundary of T1(△) is equal to 1, while in the Schwarzian derivative embedding model of universal Teichmller space, only Sid has the analogous property. Some other properties of the Schwarzian derivative embedding model and the pre-Schwarzian derivative embedding model of universal Teichmller space are also discussed.
【Key words】 pre-Schwarzian derivative; Schwarzian derivative; inner radius of univalency; closed geodesic;
- 【文献出处】 中国科学:数学 ,Scientia Sinica(Mathematica) , 编辑部邮箱 ,2010年10期
- 【分类号】O174.55
- 【被引频次】2
- 【下载频次】105